精英家教网 > 高中数学 > 题目详情
11.已知向量|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,若向量$\overrightarrow{m}$满足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|$\overrightarrow{m}$|的最大值是(  )
A.2$\sqrt{3}$-1B.2$\sqrt{3}$+1C.4D.$\sqrt{6}$+$\sqrt{2}$+1

分析 由题意结合数量积的几何意义画出图形,数形结合求得|$\overrightarrow{m}$|的最大值.

解答 解:如图,不妨设$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,$\sqrt{3}$),则$\overrightarrow{a}+\overrightarrow{b}$=(3,$\sqrt{3}$),
满足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1的|$\overrightarrow{m}$|的最大值是点P(3,$\sqrt{3}$)到原点的距离加1,
则|$\overrightarrow{m}$|的最大值为$\sqrt{{3}^{2}{+(\sqrt{3})}^{2}}$+1=2$\sqrt{3}$+1,
故选:B.

点评 本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)
(1)当点F与点C重合时,试确定点E的位置;
(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点($\frac{a}{2}$,0)到直线l的距离d≥$\frac{1}{5}$c,则双曲线的离心率e的取值范围是(  )
A.[$\frac{3}{2}$,2]B.[$\frac{\sqrt{5}}{2}$,2]C.[$\frac{3}{2}$,$\sqrt{5}$]D.[$\frac{\sqrt{5}}{2}$,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,
(1)求证:cos2$\frac{A+B}{2}$+cos2$\frac{C}{2}$=1;
(2)若cos($\frac{π}{2}$+A)sin($\frac{3}{2}$π+B)tan(C-π)<0,求证:△ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求不等式(2x+1)2(x-3)(3x-2)3(x-4)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,已知$\overrightarrow{BA}$•$\overrightarrow{BC}$=8,sinB=cosA•sinC,S△ABC=3,D为线段AB上的一点,且$\overrightarrow{CD}$=m•$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|}$+n•$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|}$,则mn的最大值为(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如已知an=$\frac{n}{{n}^{2}+156}$(n∈N*),则数列{an}的最大项为12项或13项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC中,AC=BC=1,AC⊥BC,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是(  )
A.|$\overrightarrow{a}$-$\overrightarrow{b}$|=1B.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$C.($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{5}{2}$D.($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3-3ax+$\frac{1}{4}$,若x轴为曲线y=f(x)的切线,则a的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案