精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$|\begin{array}{l}{m}&{cos2x}\\{n}&{sin2x}\end{array}|$的图象过点$(\frac{π}{12},\sqrt{3})$和点$(\frac{2π}{3},-2)$.
(1)求函数f(x)的最大值与最小值;
(2)将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数y=g(x)的图象;已知点P(0,5),若函数y=g(x)的图象上存在点Q,使得|PQ|=3,求函数y=g(x)图象的对称中心.

分析 (1)利用条件求得m、n的值,可得函数的解析式,从而求得它的最值.
(2)根据g(x)的解析式,点Q(0,2)在y=g(x)的图象上,求得φ的值,再利用正弦函数的图象的对称性,得出结论.

解答 解:(1)易知f(x)=msin2x-ncos2x,则由它的图象过点$(\frac{π}{12},\sqrt{3})$和点$(\frac{2π}{3},-2)$,
可得$\left\{\begin{array}{l}msin\frac{π}{6}-ncos\frac{π}{6}=\sqrt{3}\\ msin\frac{4π}{3}-ncos\frac{4π}{3}=-2\end{array}\right.$,解得$m=\sqrt{3}\;,\;\;n=-1$.故$f(x)=\sqrt{3}sin2x+cos2x=2sin(2x+\frac{π}{6})$.
故函数f(x)的最大值为2,最小值为-2.
(2)由(1)可知:$g(x)=f(x+φ)=2sin(2x+2φ+\frac{π}{6})$.
于是,当且仅当Q(0,2)在y=g(x)的图象上时满足条件,∴$g(0)=2sin(2ϕ+\frac{π}{6})=2$.由0<ϕ<π,得$φ=\frac{π}{6}$.
故$g(x)=2sin(2x+\frac{π}{2})=2cos2x$.由$2x=kπ+\frac{π}{2}$,得$x=\frac{kπ}{2}+\frac{π}{4}\;\;(k∈Z)$.
于是,函数y=g(x)图象的对称中心为:$(\frac{kπ}{2}+\frac{π}{4},0)(k∈Z)$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的最值以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,“A=B”是“sinAcosA=sinBcosB”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列{an}的前n项和为Sn,且a1=$\frac{1}{2}$,{Sn+nan}为常数列,则an=(  )
A.$\frac{1}{n(n+1)}$B.$\frac{1}{{2}^{n}}$C.$\frac{3}{(n+1)(n+2)}$D.$\frac{5-2n}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若点(-$\sqrt{3}$,1)在椭圆上,且(2,0)是它的一个焦点,求椭圆方程;
(2)若B为椭圆的下顶点,F是椭圆的右焦点,直线BF与椭圆的另一个交点为D,P为椭圆右准线上一点,是否存在这样的椭圆使得△PBD为等边三角形?若存在,求出椭圆的离心率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若一个球的半径与它的内接圆锥的底面半径之比为$\frac{5}{3}$,且内接圆锥的轴截面为锐角三角形,则该球的体积与它的内接圆锥的体积之比等于$\frac{500}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)
(1)当点F与点C重合时,试确定点E的位置;
(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,a3+a6=a4+5,且a2不大于1,则a8的取值范围是(  )
A.(-∞,9]B.[9,+∞)C.(-∞,9)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设单调数列{an}的前n项和为Sn,6Sn=an2+9n-4,a1,a2,a6成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求不等式(2x+1)2(x-3)(3x-2)3(x-4)≤0的解集.

查看答案和解析>>

同步练习册答案