精英家教网 > 高中数学 > 题目详情
4.(1-x2)(1+x)16的展开式中,x12的系数是-6188.

分析 (1+x)16的展开式中,通项公式Tr+1=${∁}_{16}^{r}{x}^{r}$,分别令令r=12,r=10,即可得出.

解答 解:(1+x)16的展开式中,通项公式Tr+1=${∁}_{16}^{r}{x}^{r}$,
令r=12,可得T13=${∁}_{16}^{12}{x}^{12}$=1820x12
令r=10,可得;T11=${∁}_{16}^{10}$x10=8008x10
(1-x2)(1+x)16的展开式中,x12的系数=1820-8008=-6188.
故答案为:-6188.

点评 本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,则$\frac{b}{c}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有(  )
A.18个B.16个C.14个D.12个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P={(x,y)|x+y=2},Q={(x,y)|x2+y2=2},那么P∩Q为(  )
A.B.(1,1)C.{(1,1)}D.{(-1,-1)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知S是数集,若对任意a、b∈S都有a+b、a-b,ab、$\frac{a}{b}$(b≠0)∈S,则称S是数域.下列四个数集中,数域的个数是(  )
①整数集Z;②有理数集Q;③实数集R;④数集F={a+$\sqrt{2}$b|a,b∈Q}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x∈R,则不等式|x-3|<1的解集为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从一副52张的扑克牌中任取两张,则这两张牌的花色相同的概率是(  )
A.$\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$B.$\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$C.$\frac{2}{52}$D.$\frac{13}{52}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意的实数a,b,用max{a,b}表示a,b中的较大者,如果函数f(x)=max{2x,x2},那么${∫}_{0}^{5}$f(x)dx=$\frac{19}{ln2}$+$\frac{56}{3}$.

查看答案和解析>>

同步练习册答案