【题目】我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径
)的中心
为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)
到火星表面的距离为
,远火星点(轨道上离火星表面最远的点)
到火星表面的距离为
.假定探测器由近火星点
第一次逆时针运行到与轨道中心
的距离为
时进行变轨,其中
分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到
).
![]()
科目:高中数学 来源: 题型:
【题目】如图1,一艺术拱门由两部分组成,下部为矩形
,
的长分别为
和
,上部是圆心为
的劣弧
,
.
![]()
(1)求图1中拱门最高点到地面的距离;
(2)现欲以B点为支点将拱门放倒,放倒过程中矩形
所在的平面始终与地面垂直,如图2、图3、图4所示.设
与地面水平线
所成的角为
.记拱门上的点到地面的最大距离为
,试用
的函数表示
,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知双曲线
设过点
的直线l的方向向量![]()
(1) 当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2) 证明:当
>
时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了考察冰川的融化状况,一支科考队在某冰川山上相距8km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4).考察范围到A、B两点的距离之和不超过10km的区域.
(I)求考察区域边界曲线的方程:
(II)如图4所示,设线段
是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三个圆交于一点
,又两两将于点
、
、
.以
为圆心的一个圆
与上述三个圆分别交于点
,
,
,其中,点
在不含点
的圆上,等等.又设
、
、
的外接圆交于一点
,
、
的外接圆交于一点
.证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】p:关于x的方程
无解,q:
(
)
(1)若
时,“
”为真命题,“
”为假命题,求实数a的取值范围.
(2)当命题“若p,则q”为真命题,“若q,则p”为假命题时,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com