【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为
(
为参数,
),抛物线C的普通方程为
.
(1)求抛物线C的准线的极坐标方程;
(2)设直线l与抛物线C相交于A,B两点,求
的最小值及此时
的值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,若底面
是正三角形,侧棱长
,
、
分别为棱
、
的中点,并且
,则异面直线
与
所成角为______;三棱锥
的外接球的体积为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”,区间
为函数
的一个“可等域区间”.给出下列4个函数:
①
;②
; ③
; ④
.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,正方形
所在平面垂直于平面
,四边形
为平行四边形,G为
上一点,且
平面
,
.
![]()
(1)求证:平面
平面
;
(2)当三棱锥
体积最大时,求平面
与平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
![]()
下列四个结论:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
,
与
关于抛物线的对称轴对称,斜率为1的直线交抛物线于
、
两点,且
、
在直线
两侧.
(1)求证:
平分
;
(2)点
为抛物线在
、
处切线的交点,若
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com