精英家教网 > 高中数学 > 题目详情

【题目】已知函数为定义域上的奇函数,且在上是单调递增函数,函数,数列为等差数列,,且公差不为0,若,则( )

A. 45 B. 15 C. 10 D. 0

【答案】A

【解析】

根据题意,由奇函数的性质可得(-x)+f(x)=0,又由g(x)=f(x-5)+xg(a1)+g(a2)+…+g(a9)=45,可得f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,结合等差数列的性质可得f(a1-5)=-f(a9-5)=f(5-a9),进而可得a1-5=5-a9,即a1+a9=10,进而计算可得答案.

根据题意,函数y=f(x)为定义域R上的奇函数,
则有f(-x)+f(x)=0,
∵g(x)=f(x-5)+x,
∴若g(a1)+g(a2)+…+g(a9)=45,
f(a1-5)+a1+f(a2-5)+a2+…+f(a9-5)+a9=45,
f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,
f(a1-5)+f(a2-5)+…+f(a9-5)=0,
又由y=f(x)为定义域R上的奇函数,且在R上是单调函数,
f(a1-5)+f(a2-5)+…+f(a9-5)是9项的和且和为0,
必有f(a1-5)+f(a9-5)=0,
则有a1-5=5-a9
a1+a9=10,
在等差数列中,a1+a9=10=2a5
a5=5,
a1+a2+…+a9=9a5=45;
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等腰△ABC中,AC=BC= ,AB=2,E,F分别为AC,BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=

(1)求证:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间上任取一个数记为a,在区间上任取一个数记为b

a,求直线的斜率为的概率;

a,求直线的斜率为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(1﹣ )的定义域为[1,+∞),则函数y= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:

年龄

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

频数

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1


(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

支持

a=

c=

不支持

b=

d=

合计

参考数据:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆相交于不同的两点A,B.

(1)求线段AB的中点M的轨迹C的方程;

(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,点的中点

(1)求证:平面

(2)若平面 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1

(1)求证:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形, .

(1)求证:平面平面

(2)若,求锐角二面角的余弦值.

查看答案和解析>>

同步练习册答案