精英家教网 > 高中数学 > 题目详情
5.已知圆C:x2+y2+6x-8y+21=0.
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为4,圆心D在直线l2:x-y+5=0上,且与圆C内切,求圆D的方程.

分析 (1)将圆C方程化为标准方程,找出圆心C坐标与半径r,先验证斜率不存在是否成立,由点斜式设直线l的方程,根据直线与圆相切的条件、点到直线的距离公式列出方程求出斜率,即可确定出直线l的方程;
(2)设圆心D的坐标为(a,b),根据条件和直线与圆相切的条件、点到直线的距离公式列出方程组,求出a、b的值,即可求出圆D的方程.

解答 解:(1)圆C:x2+y2+6x-8y+21=0化为标准方程:(x+3)2+(y-4)2=4,
∴圆心C(-3,4),半径r=2;
①当直线l1斜率不存在时,直线x=-1满足题意;
②当斜率存在时,设直线l1方程为y=k(x+1),即kx-y+k=0,
根据题意得:圆心C到直线l1的距离d=r,则$\frac{|-3k-4+k|}{\sqrt{{k}^{2}+1}}=2$,
解得k=-$\frac{3}{4}$,∴直线l1方程为3x+4y+3=0,
综上,直线l1方程为x=-1或3x+4y+3=0;
(2)设圆心D的坐标为(a,b),且半径是4,
∵圆心D在直线l2:x-y+5=0上,且与圆C内切,
∴$\left\{\begin{array}{l}{a-b+5=0}\\{\sqrt{(a+3)^{2}+(b-4)^{2}}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-3}\\{b=2}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$,
∴圆D的方程是(x+3)2+(y-2)2=16或(x+1)2+(y-4)2=16.

点评 本题考查直线与圆相切的条件,待定系数法求直线与圆的方程,及点到直线的距离公式,考查方程思想和配方法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,D为BC的中点,En为AC上的一列动点,且$\overrightarrow{{E}_{n}A}$=$\frac{1}{2}$an+1$\overrightarrow{{E}_{n}B}$-$\frac{1}{2}$(an-1)$\overrightarrow{{E}_{n}D}$.若a1=0,则an=(  )
A.1-($\frac{1}{2}$)nB.1-($\frac{1}{2}$)n-1C.($\frac{1}{2}$)n-1D.($\frac{1}{2}$)n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+c(a,b∈R)若函数f(x)在x=0,x=2处取得极值,
(1)求a,b的值.
(2)若x∈[0,1],f(x)≤c2-2恒成立时,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P(1,-1)在抛物线C:y=ax2上,过点P作两条斜率互为相反数的直线分别交抛物线C于点A、B(异于点P).
(Ⅰ)求抛物线C的焦点坐标.
(Ⅱ)记直线AB交y轴于点(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足PA⊥PF,则|PF|等于(  )
A.-1+$\sqrt{6}$B.-1+2$\sqrt{6}$C.-1+$\sqrt{5}$D.-1+2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x2-2cosx,则f(0),f(-$\frac{1}{3}$),f($\frac{2}{5}$)的大小关系是(  )
A.f(0)<f(-$\frac{1}{3}$)<f($\frac{2}{5}$)B.f(-$\frac{1}{3}$)<f(0)<f($\frac{2}{5}$)C.f($\frac{2}{5}$)<f(-$\frac{1}{3}$)<f(0)D.f(0)<f($\frac{2}{5}$)<f(-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.志强同学在一次课外研究性学习中发现以下一系列等式成立:$\frac{1+(\frac{1}{2})^{2}}{1+{2}^{2}}$=($\frac{1+\frac{1}{2}}{1+2}$)2,$\frac{1+{4}^{3}}{1+(\frac{1}{4})^{3}}$=($\frac{1+4}{1+\frac{1}{4}}$)3,$\frac{{1+{{({-\frac{{\sqrt{2}}}{2}})}^4}}}{{1+{{({-\sqrt{2}})}^4}}}={({\frac{{1-\frac{{\sqrt{2}}}{2}}}{{1-\sqrt{2}}}})^4}$,…,于是他想用符号表示这个规律,他已经写了一部分,请帮他补充完整,若a,b∈R,b≠1,ab=1,n∈N*,则$\frac{1+{a}^{n}}{1+{b}^{n}}=(\frac{1+a}{1+b})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在多面体ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.
(1)求证:BC∥EF;
(2)求三棱锥B-ADE的体积.

查看答案和解析>>

同步练习册答案