·ÖÎö £¨¢ñ£©£¨¢¡£©Í¨¹ýÌâÒâ¿ÉÖª2a2n=a2n-1+a2n+1¡¢$a_{2n+1}^2={a_{2n}}{a_{2n+2}}$£¬»¯¼ò¼´µÃ½áÂÛ£»£¨¢¢£©Í¨¹ý¼ÆËã¿ÉÖªÊýÁÐ$\{\sqrt{{a_{2n}}}\}$µÄÊ×Ïî¼°¹«²î£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨ii£©¡¢·ÅËõ¡¢ÁÑÏî¿ÉÖª$\frac{1}{{a}_{n}}$£¾4£¨$\frac{1}{n+2}$-$\frac{1}{n+3}$£©£¬½ø¶ø²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£®
½â´ð £¨¢ñ£©£¨¢¡£©Ö¤Ã÷£ºÒòΪÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁУ¬a1=2£¾0£¬
ËùÒÔan£¾0£¨n¡ÊN*£©£®
ÓÉÌâÒâµÃ2a2n=a2n-1+a2n+1£¬$a_{2n+1}^2={a_{2n}}{a_{2n+2}}$£¬
ÓÚÊÇ$2a_{2n}^{\;}=\sqrt{{a_{2n-2}}{a_{2n}}}+$$\sqrt{{a_{2n}}{a_{2n+2}}}$£¬
»¯¼òµÃ$2\sqrt{{a_{2n}}}=\sqrt{{a_{2n-2}}}+$$\sqrt{{a_{2n+2}}}$£¬
ËùÒÔÊýÁÐ$\{\sqrt{{a_{2n}}}\}$ΪµÈ²îÊýÁУ®------£¨4·Ö£©
£¨¢¢£©½â£ºÒòΪa3=2a2-a1=6£¬${a_4}=\frac{a_3^2}{a_2}=9$£¬
ËùÒÔÊýÁÐ$\{\sqrt{{a_{2n}}}\}$µÄÊ×ÏîΪ$\sqrt{a_2}=2$£¬¹«²îΪ$d=\sqrt{a_4}-\sqrt{a_2}=1$£¬
ËùÒÔ$\sqrt{{a_{2n}}}=n+1$£¬´Ó¶ø${a_{2n}}={£¨n+1£©^2}$£®
½áºÏ$a_{2n-1}^2={a_{2n-2}}{a_{2n}}$£¬¿ÉµÃa2n-1=n£¨n+1£©£®
Òò´Ë£¬µ±nΪżÊýʱan=$\frac{1}{4}{£¨n+2£©^2}$£¬µ±nÎªÆæÊýʱan=$\frac{£¨n+1£©£¨n+3£©}{4}$£®----------£¨8·Ö£©
£¨2£©Ö¤Ã÷£ºÍ¨¹ý£¨ii£©¿ÉÖª${a_n}=\frac{1}{2}[1+{£¨-1£©^{n+1}}]•\frac{£¨n+1£©£¨n+3£©}{4}+\frac{1}{2}[1+{£¨-1£©^n}]•\frac{{{{£¨n+2£©}^2}}}{4}$=$\frac{1}{4}{n^2}+n+\frac{{7+{{£¨-1£©}^n}}}{8}$£®
ÒòΪan=$\frac{1}{4}{n^2}+n+\frac{{7+{{£¨-1£©}^n}}}{8}¡Ü\frac{1}{4}{n^2}+n+1=\frac{{{{£¨n+2£©}^2}}}{4}£¼\frac{1}{4}£¨n+2£©£¨n+3£©$£¬
ËùÒÔ$\frac{1}{a_n}£¾\frac{4}{£¨n+2£©£¨n+3£©}=4£¨\frac{1}{n+2}-\frac{1}{n+3}£©$£¬
¡à${S_n}=\frac{1}{a_1}$$+\frac{1}{a_2}$$+\frac{1}{a_3}$+¡$+\frac{1}{a_n}$
$£¾4[£¨\frac{1}{3}-\frac{1}{4}£©+£¨\frac{1}{4}-\frac{1}{5}£©+¡+£¨\frac{1}{n+1}-\frac{1}{n+2}£©+£¨\frac{1}{n+2}-\frac{1}{n+3}£©]$
=$4£¨\frac{1}{3}-\frac{1}{n+3}£©=\frac{4n}{3£¨n+3£©}$£¬
ËùÒÔ${S_n}£¾\frac{4n}{3£¨n+3£©}$£¬n¡ÊN*£®----------£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{15}{4}$ | B£® | $-\frac{9}{4}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{9}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 45 | B£® | 50 | C£® | 55 | D£® | 66 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 10Ôª | B£® | 11Ôª | C£® | 14Ôª | D£® | 16Ôª |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | i¡Ý32 | B£® | i£¼32 | C£® | i¡Ý16 | D£® | i£¼16 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com