8£®ÔÚµ¥µ÷µÝÔöÊýÁÐ{an}ÖУ¬a1=2£¬a2=4£¬ÇÒa2n-1£¬a2n£¬a2n+1³ÉµÈ²îÊýÁУ¬a2n£¬a2n+1£¬a2n+2³ÉµÈ±ÈÊýÁУ¬n=1£¬2£¬3£¬¡­£®
£¨¢ñ£©£¨¢¡£©ÇóÖ¤£ºÊýÁÐ$\{\sqrt{{a_{2n}}}\}$ΪµÈ²îÊýÁУ»
£¨¢¢£©ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨¢ò£©ÉèÊýÁÐ$\{\frac{1}{a_n}\}$µÄǰnÏîºÍΪSn£¬Ö¤Ã÷£ºSn£¾$\frac{4n}{3£¨n+3£©}$£¬n¡ÊN*£®

·ÖÎö £¨¢ñ£©£¨¢¡£©Í¨¹ýÌâÒâ¿ÉÖª2a2n=a2n-1+a2n+1¡¢$a_{2n+1}^2={a_{2n}}{a_{2n+2}}$£¬»¯¼ò¼´µÃ½áÂÛ£»£¨¢¢£©Í¨¹ý¼ÆËã¿ÉÖªÊýÁÐ$\{\sqrt{{a_{2n}}}\}$µÄÊ×Ïî¼°¹«²î£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨ii£©¡¢·ÅËõ¡¢ÁÑÏî¿ÉÖª$\frac{1}{{a}_{n}}$£¾4£¨$\frac{1}{n+2}$-$\frac{1}{n+3}$£©£¬½ø¶ø²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£®

½â´ð £¨¢ñ£©£¨¢¡£©Ö¤Ã÷£ºÒòΪÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁУ¬a1=2£¾0£¬
ËùÒÔan£¾0£¨n¡ÊN*£©£®
ÓÉÌâÒâµÃ2a2n=a2n-1+a2n+1£¬$a_{2n+1}^2={a_{2n}}{a_{2n+2}}$£¬
ÓÚÊÇ$2a_{2n}^{\;}=\sqrt{{a_{2n-2}}{a_{2n}}}+$$\sqrt{{a_{2n}}{a_{2n+2}}}$£¬
»¯¼òµÃ$2\sqrt{{a_{2n}}}=\sqrt{{a_{2n-2}}}+$$\sqrt{{a_{2n+2}}}$£¬
ËùÒÔÊýÁÐ$\{\sqrt{{a_{2n}}}\}$ΪµÈ²îÊýÁУ®------£¨4·Ö£©
£¨¢¢£©½â£ºÒòΪa3=2a2-a1=6£¬${a_4}=\frac{a_3^2}{a_2}=9$£¬
ËùÒÔÊýÁÐ$\{\sqrt{{a_{2n}}}\}$µÄÊ×ÏîΪ$\sqrt{a_2}=2$£¬¹«²îΪ$d=\sqrt{a_4}-\sqrt{a_2}=1$£¬
ËùÒÔ$\sqrt{{a_{2n}}}=n+1$£¬´Ó¶ø${a_{2n}}={£¨n+1£©^2}$£®
½áºÏ$a_{2n-1}^2={a_{2n-2}}{a_{2n}}$£¬¿ÉµÃa2n-1=n£¨n+1£©£®
Òò´Ë£¬µ±nΪżÊýʱan=$\frac{1}{4}{£¨n+2£©^2}$£¬µ±nÎªÆæÊýʱan=$\frac{£¨n+1£©£¨n+3£©}{4}$£®----------£¨8·Ö£©
£¨2£©Ö¤Ã÷£ºÍ¨¹ý£¨ii£©¿ÉÖª${a_n}=\frac{1}{2}[1+{£¨-1£©^{n+1}}]•\frac{£¨n+1£©£¨n+3£©}{4}+\frac{1}{2}[1+{£¨-1£©^n}]•\frac{{{{£¨n+2£©}^2}}}{4}$=$\frac{1}{4}{n^2}+n+\frac{{7+{{£¨-1£©}^n}}}{8}$£®
ÒòΪan=$\frac{1}{4}{n^2}+n+\frac{{7+{{£¨-1£©}^n}}}{8}¡Ü\frac{1}{4}{n^2}+n+1=\frac{{{{£¨n+2£©}^2}}}{4}£¼\frac{1}{4}£¨n+2£©£¨n+3£©$£¬
ËùÒÔ$\frac{1}{a_n}£¾\frac{4}{£¨n+2£©£¨n+3£©}=4£¨\frac{1}{n+2}-\frac{1}{n+3}£©$£¬
¡à${S_n}=\frac{1}{a_1}$$+\frac{1}{a_2}$$+\frac{1}{a_3}$+¡­$+\frac{1}{a_n}$
$£¾4[£¨\frac{1}{3}-\frac{1}{4}£©+£¨\frac{1}{4}-\frac{1}{5}£©+¡­+£¨\frac{1}{n+1}-\frac{1}{n+2}£©+£¨\frac{1}{n+2}-\frac{1}{n+3}£©]$
=$4£¨\frac{1}{3}-\frac{1}{n+3}£©=\frac{4n}{3£¨n+3£©}$£¬
ËùÒÔ${S_n}£¾\frac{4n}{3£¨n+3£©}$£¬n¡ÊN*£®----------£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÏÂÁк¯ÊýµÄµ¼Êý£º
£¨1£©y=x£¨1+$\frac{2}{x}$+$\frac{2}{{x}^{2}}$£©
£¨2£©y=x4-3x2-5x+6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªf£¨x£©=x+$\frac{1}{x}$-2£¬²»µÈʽf£¨2x£©-k•2x¡Ý0£¬ÔÚx¡Ê[-1£¬1]ÉϺã³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¼ÆË㸴Êý$\frac{4+2i}{1-2i}$=2i£¨iΪÐéÊýµ¥Î»£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©Âú×ãf£¨0£©=-3£¬f£¨1£©=f£¨-3£©=0£¬Ôòf£¨$\frac{3}{2}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{15}{4}$B£®$-\frac{9}{4}$C£®$\frac{3}{4}$D£®$\frac{9}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄN=10£¬ÄÇôÊä³öµÄS=£¨¡¡¡¡£©
A£®45B£®50C£®55D£®66

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¹ºÂò2¸ö¼¦ÍȺÍ1±­¿ìÀÖÒûÁϵÄÇ®²»ÉÙÓÚ19Ôª£¬¹ºÂò1¸ö¼¦ÍȺÍ2±­¿ÉÀÖÒûÁϵÄÇ®²»ÉÙÓÚ14Ôª£¬¼ÙÉèÿ¸ö¼¦ÍȺÍÿ±­ÒûÁϵļ۸ñ¶¼ÎªÕûÊý£¬Ôò¹ºÂò1¸ö¼¦ÍȺÍ1±­¿ÉÀÖÒûÁϵÄÇ®×îÉÙÐèÒª£¨¡¡¡¡£©
A£®10ÔªB£®11ÔªC£®14ÔªD£®16Ôª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®°´ÕÕÈçͼËùʾµÄ³ÌÐò¿òͼִÐУ¬ÈôÊä³öµÄ½á¹ûΪ1024£¬ÔòW´¦µÄÌõ¼þ¿ÉΪ£¨¡¡¡¡£©
A£®i¡Ý32B£®i£¼32C£®i¡Ý16D£®i£¼16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆÎªº¯Êýf£¨x£©µÄÉϽ磮ÒÑÖªº¯Êý$f£¨x£©=1+a•{£¨{\frac{1}{2}}£©^x}+{£¨{\frac{1}{4}}£©^x}$£»
£¨1£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉϵÄÖµÓò£¬²¢ÅжϺ¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñΪÓн纯Êý£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©ÉÏÊÇÒÔ4ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸