精英家教网 > 高中数学 > 题目详情
17.已知f(x)=x+$\frac{1}{x}$-2,不等式f(2x)-k•2x≥0,在x∈[-1,1]上恒成立,求k的取值范围.

分析 运用参数分离可得k≤1+($\frac{1}{{2}^{x}}$)2-$\frac{2}{{2}^{x}}$对x∈[-1,1]上恒成立,令t=$\frac{1}{{2}^{x}}$,则$\frac{1}{2}$≤t≤2,再用配方,结合二次函数的值域求法,求得最小值,即可得到k的范围.

解答 解:不等式f(2x)-k•2x≥0即为
2x+2-x-2-k•2x≥0,即有
k≤1+($\frac{1}{{2}^{x}}$)2-$\frac{2}{{2}^{x}}$对x∈[-1,1]上恒成立,
令t=$\frac{1}{{2}^{x}}$,则$\frac{1}{2}$≤t≤2,
即有k≤1+t2-2t=(t-1)2的最小值.
当t=1时,(t-1)2取得最小值,且为0,
即有k≤0,
则k的范围是(-∞,0].

点评 本题考查不等式的恒成立问题,主要考查指数函数的单调性的运用,注意运用参数分离以及换元法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex+ax-1(a为常数,a∈R).
(1)求函数f(x)的单调区间;
(2)若对所有x≥0都有f(x)≥f(-x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将向量$\overrightarrow a$=(2,1)绕原点按逆时针方向旋转$\frac{π}{4}$得到向量$\overrightarrow b$,则向量$\overrightarrow b$的坐标是($\frac{\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个命题:
①用相关指数R2来刻画回归效果,R2越大,说明模型的拟和效果越好;
②为了解高二学生身体状况,某校将高二每个班学号的个数为1的学生选作代表进行调查体检,这种抽样方法称为系统抽样;
③若f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称;
④函数y=f(1+x)的图象与y=-f(1-x) 的图象关于y轴对称.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设等比数列{an}的前n项和为Tn,则Tn,$\frac{{T}_{6}}{{T}_{3}}$,$\frac{{T}_{9}}{{T}_{6}}$,$\frac{{T}_{12}}{{T}_{9}}$成等比数列,类比上述结论,我们有如下真命题:设等差数列{bn}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若满足∠ABC=60°,AC=k,BC=12的△ABC恰有一个,那么k的取值范围是(  )
A.k=6$\sqrt{3}$B.0<k≤12C.k≥12D.k≥12或k=6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将函数y=sinx的图象向右平移$\frac{π}{3}$个单位,再将所得图象上各点横坐标伸长到原来的3倍(纵坐标不变),再将所得图象上各点纵坐标伸长为原来的4倍(横坐标不变),得到函数y=f(x)的图象;
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)求此函数的对称中心的坐标;
(Ⅲ)用五点作图法作出这个函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在单调递增数列{an}中,a1=2,a2=4,且a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,n=1,2,3,….
(Ⅰ)(ⅰ)求证:数列$\{\sqrt{{a_{2n}}}\}$为等差数列;
(ⅱ)求数列{an}的通项公式.
(Ⅱ)设数列$\{\frac{1}{a_n}\}$的前n项和为Sn,证明:Sn>$\frac{4n}{3(n+3)}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ex,g(x)=lnx的图象分别与直线y=m交于A,B两点,则满足k<|AB|恒成立的最大正整数k为参考数据e≈2.718,e0.1≈1.65,e0.4≈1.82(  )
A.1B.3C.2D.4

查看答案和解析>>

同步练习册答案