精英家教网 > 高中数学 > 题目详情
6.已知△ABC的内角A、B、C所对的边分别为a,b,c,ac=6且(2a-c)cosB=bcosC.
(1)求△ABC的面积S;
(2)若b=$\sqrt{7}$,求sinA+sinC的值.

分析 (1)使用正弦定理将边化角,再利用和角公式化简得出cosB;
(2)根据余弦定理解出a+c,使用正弦定理得出.

解答 解:(1)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,∴cosB=$\frac{1}{2}$,∴B=60°.sinB=$\frac{\sqrt{3}}{2}$.
∴△ABC的面积S=$\frac{1}{2}ac$sinB=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
(2)由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-7}{12}=\frac{1}{2}$,解得a2+c2=13.
又∵ac=6,∴a=2,c=3或a=3,c=2.
∴a+c=5.
∵$\frac{b}{sinB}=\frac{a+c}{sinA+sinC}$,∴sinA+sinC=$\frac{a+c}{b}sinB$=$\frac{5\sqrt{21}}{14}$.

点评 本题考查了三角函数的恒等变换,正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知A={锐角},B={第一象限角},C={小于90°的角},那么A,B,C的关系式(  )
A.A=B∩CB.B⊆CC.A∪C=CD.A=B=C

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个底面直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,求此球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已ac=b2-a2,A=$\frac{π}{6}$,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设D是△ABC的边BC上一点,且$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,若AB:AD:AC=3:k:1,则k的取值范围是(  )
A.($\frac{1}{3}$,$\frac{4}{3}$)B.(1,4)C.($\frac{5}{3}$,$\frac{7}{3}$)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+c,若f(x)<0的解集是{x|1<x<3},函数在[-1,3]的最大值是16.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.log${\;}_{\frac{3}{4}}$2,($\frac{3}{4}$)π,($\frac{3}{4}$)e按从小到大排列为$lo{g}_{\frac{3}{4}}2$<($\frac{3}{4}$)π<($\frac{3}{4}$)e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当x∈[-2,1]时,不等式ax3-x2+x+1≥0,则a的取值范围是{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$a={3^{0.1}},b={log_π}2,c={log_2}sin\frac{2π}{3}$,则a,b,c大小关系为(  )
A.b>c>aB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

同步练习册答案