精英家教网 > 高中数学 > 题目详情
13.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2$\sqrt{2}$,A1C=2$\sqrt{3}$,M、N分别是AC、BB1的中点.
(1)求证:MN∥面A1B1C;
(2)求点M到平面A1B1C的距离.

分析 (1)取A1A的中点E,连接NE,ME,证明平面MNE∥面A1B1C,即可证明MN∥面A1B1C;
(2)利用等体积,即可求点M到平面A1B1C的距离.

解答 (1)证明:取A1A的中点E,连接NE,ME,则NE∥A1B1
∵NE?面A1B1C,A1B1?面A1B1C,
∴NE∥面A1B1C.
∵M是AC的中点,
∴ME∥A1C,
∵ME?面A1B1C,A1C?面A1B1C,
∴ME∥面A1B1C.
∵NE∩ME=E,
∴平面MNE∥面A1B1C.
∵MN?平面MNE,
∴MN∥面A1B1C;
(2)解:∵直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2$\sqrt{2}$,A1C=2$\sqrt{3}$,
∴∠ABC=90°,B1C=2$\sqrt{2}$,A1A=2
又A1B1⊥平面B1C,∴A1B1⊥B1C,
∴${S}_{△{A}_{1}{B}_{1}C}$=$\frac{1}{2}×2\sqrt{2}×2$=2$\sqrt{2}$,
设点M到平面A1B1C的距离为h,由等体积可得$\frac{1}{3}×2\sqrt{2}×h=\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×\sqrt{2}$
∴h=$\frac{\sqrt{2}}{2}$.

点评 本题考查线面、面面平行的判定,考查点面距离的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2(a>0),g(x)=ex
(Ⅰ)求函数$φ(x)=\frac{g(x)}{f(x)}\;(x≠0)$的单调区间和极值;
(Ⅱ)若f(x),g(x)的图象存在公共切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=2x3-3x2-12x+8.
(1)求函数的增区间;     
(2)求函数在区间[-2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx-x+1,α∈R.
(1)求f(x)的单调区间;
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求所有实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,AC⊥BC,D是AB的中点,F是BC上一点,AF交CD于点E,且CE=DE,∠BCD=30°,现将△ACD沿CD折起,折成钝二面角A-CD-B.
(1)求证:平面AEF⊥平面CBD;
(2)当AC⊥BD时,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设随机变量X的分布函数为F(x)=$\left\{\begin{array}{l}{0,x≤0}\\{1-{e}^{-x},x>0}\end{array}\right.$,则P(x≤2)=1-e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥P-ABC中,D是线段BC的中点,△ABC和△PAD所在的平面互相垂直,PA⊥AD,AF⊥PB,AB=2,AC=4,AD=$\sqrt{3}$,∠BAC=120°.
(1)证明:PB⊥AD;
(2)若∠AFD的大小为45°,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,BD⊥AC于O,且AA1=OC=2OA=4,点M是棱CC1上一点.
(Ⅰ)如果过A1,B1,O的平面与底面ABCD交于直线l,求证:l∥AB;
(Ⅱ)当M是棱CC1中点时,求证:A1O⊥DM;
(Ⅲ)设二面角A1-BD-M的平面角为θ,当|cosθ|=$\frac{2\sqrt{5}}{25}$时,求CM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}$x3-4x+4.
(Ⅰ)求函数的极值;
(Ⅱ)求函数在区间[-3,4]上的最大值和最小值.

查看答案和解析>>

同步练习册答案