精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\left\{\begin{array}{l}{a{x}^{2}+\frac{1}{5}(x≥0)}\\{(\frac{1}{2}-a)x+{a}^{2}(x<0)}\end{array}\right.$是增函数,则实数a的取值范围是(0,$\frac{\sqrt{5}}{5}$).

分析 根据分段函数的单调性的性质进行求解即可.

解答 解:若函数在R上是增函数,
则在x≥0和x<0上分别递增,
且满足$\left\{\begin{array}{l}{a>0}\\{\frac{1}{2}-a>0}\\{{a}^{2}≤\frac{1}{5}}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>0}\\{a<\frac{1}{2}}\\{-\frac{\sqrt{5}}{5}<a<\frac{\sqrt{5}}{5}}\end{array}\right.$.解得0<a<$\frac{\sqrt{5}}{5}$,
故答案为:(0,$\frac{\sqrt{5}}{5}$).

点评 本题主要考查函数单调性的性质,利用分段函数的单调性的性质是解决本题的关键.注意在端点处,函数值的大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.解二元二次方程组$\left\{\begin{array}{l}{{x}^{2}+2xy+3{y}^{2}-48x+4y-4=0}\\{2{x}^{2}+4xy+6{y}^{2}-99x+7y-6=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设0≤x≤1,求y=4-x-6•2-x+10的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知log23=a,log37=b,则log27等于(  )
A.a+bB.a-bC.abD.$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对任意的实数x1,x2,max{x1,x2}表示x1,x2中的那个数,若f(x)=2-x2,g(x)=x.
(1)求max(f(x),g(x))的解析式
(2)说明函数最值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若指数函数f(x)=ax的图象过点(2,4),则满足a2x+1<a3-2x的x取值范围是(  )
A.x<$\frac{1}{2}$B.x$>\frac{1}{2}$C.x>2D.x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知非零向量$\overrightarrow{a}$与$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{a}$-$\overrightarrow{b}$,如果$\overrightarrow{c}$∥$\overrightarrow{d}$,求证:$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知y=f(x)的定义域为[-1,1],试求y=f(x-2)+f($\frac{1}{2}$x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M过点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P(x,y)是圆M上任意一点求x+y的取值范围.

查看答案和解析>>

同步练习册答案