分析 根据分段函数的单调性的性质进行求解即可.
解答 解:若函数在R上是增函数,
则在x≥0和x<0上分别递增,
且满足$\left\{\begin{array}{l}{a>0}\\{\frac{1}{2}-a>0}\\{{a}^{2}≤\frac{1}{5}}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>0}\\{a<\frac{1}{2}}\\{-\frac{\sqrt{5}}{5}<a<\frac{\sqrt{5}}{5}}\end{array}\right.$.解得0<a<$\frac{\sqrt{5}}{5}$,
故答案为:(0,$\frac{\sqrt{5}}{5}$).
点评 本题主要考查函数单调性的性质,利用分段函数的单调性的性质是解决本题的关键.注意在端点处,函数值的大小关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x<$\frac{1}{2}$ | B. | x$>\frac{1}{2}$ | C. | x>2 | D. | x<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com