【题目】年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.
![]()
(1)求这50家食品生产企业考核成绩的平均数
(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)
(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在
的企业数为X,求X的分布列与数学期望
(3)若该市食品生产企业的考核成绩X服从正态分布
其中
近似为50家食品生产企业考核成绩的平均数
,
近似为样本方差
,经计算得
,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).
附参考数据与公式:
![]()
![]()
则
,
.![]()
【答案】(1)
,
;(2)分布列见解析,
;(3)79家
【解析】
(1)利用频率分布直方图的性质能求出这50家食品生产企业考核成绩的平均数和中位数;
(2)这50家食品生产企业中考核成绩不低于88分的企业有10家,其中考核成绩在
内的企业有5家,得出随机变量
的可能取值,分别求出相应的概率,得出分布列,求得数学期望;
(3)根据题意得
,由此能求出估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家.
(1)由题意,这50家食品生产企业考核成绩的平均数为:
![]()
(分),
由频率分布图可知
内,所以
,
解得
分.
(2)根据题意,这50家食品生产企业中考核成绩不低于88分的企业有:
(家),
其中考核成绩在
内的企业有
(家),
所以X可能取值有0,1,2,3,4
则
,
,
,
,
,
所以X的分布列为
X | 0 | 1 | 2 | 3 | 4 |
P |
|
|
|
|
|
所以
.
(3)由题意得
,所以
,
所以
,所以
(家),
所以500家食品生产企业质量管理考核成绩高于90.06分的有79家.
科目:高中数学 来源: 题型:
【题目】已知
分别为椭圆
的左、右焦点,
为该椭圆的一条垂直于
轴的动弦,直线
与
轴交于点
,直线
与直线
的交点为
.
(1)证明:点
恒在椭圆
上.
(2)设直线
与椭圆
只有一个公共点
,直线
与直线
相交于点
,在平面内是否存在定点
,使得
恒成立?若存在,求出该点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
,过右焦点F的直线l与椭圆E交于A,B两点(A,B两点不在x轴上),椭圆E在A,B两点处的切线交于P,点P在定直线
上.
(1)记点
,求过点
与椭圆E相切的直线方程;
(2)以
为直径的圆过点F,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,如图,
分别交
轴正半轴于点
.射线
分别交
于点
,动点
满足直线
与
轴垂直,直线
与
轴垂直.
![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
交曲线
与点
,射线
与点
,且交曲线
于点
.问:
的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)若直线
与曲线
交于
、
两点,点
的坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且Sn=n(n+2)(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn
,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,A、B分别为椭圆
的上、下顶点,若动直线l过点
,且与椭圆
相交于C、D两个不同点(直线l与y轴不重合,且C、D两点在y轴右侧,C在D的上方),直线AD与BC相交于点Q.
![]()
(1)设
的两焦点为
、
,求
的值;
(2)若
,且
,求点Q的横坐标;
(3)是否存在这样的点P,使得点Q的纵坐标恒为
?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com