精英家教网 > 高中数学 > 题目详情
12.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4.
(1)求四棱锥P-ABCD的体积;
2)求证:CD⊥平面PAC.

分析 (1)由四边形ABCD是直角梯形,PA⊥底面ABCD,能求出四棱锥P-ABCD的体积.
(2)由PA⊥底面ABCD,得PA⊥CD,由勾股定理得AC⊥CD,由此能证明CD⊥平面PAC.

解答 解:(1)由已知,四边形ABCD是直角梯形,
∴${S_{ABCD}}=\frac{1}{2}(2+4)×2=6$,
∵PA⊥底面ABCD,
∴四棱锥P-ABCD的体积${V_{P-ABCD}}=\frac{1}{3}{S_{ABCD}}•PA=\frac{1}{3}×6×2=4$.…(6分)
证明:(2)由PA⊥底面ABCD,CD?底面ABCD,则PA⊥CD,
在三角形ABC中,$AC=\sqrt{A{B^2}+B{C^2}}=2\sqrt{2}$,
又$CD=2\sqrt{2}$,∴AC2+CD2=AD2,即AC⊥CD,…(10分)
又∵PA,AC?平面PAC,PA∩AC=A,
∴CD⊥平面PAC.…(12分)

点评 本题考查线面垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.命题p“若x=2,则(x-2)(x+1)=0”,其否命题记为q,则下列命题中,真命题是(  )
A.¬pB.qC.p∧qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某中学教务处采用系统抽样方法,从学校高一年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是(  )
A.177B.417C.157D.367

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设F1,F2分别是椭圆$\frac{x^2}{m}+\frac{y^2}{3}=1$的两个焦点,P是第一象限内该椭圆上一点,且$\frac{{sin∠P{F_1}{F_2}+sin∠P{F_2}{F_1}}}{{sin∠{F_1}P{F_2}}}=2$,则正数m的值为4或$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当复数$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$为纯虚数时,则实数m的值为(  )
A.m=2B.m=-3C.m=2或m=-3D.m=1或m=-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了2个伙伴;第2天,3只蜜蜂飞出去,各自找回了2个伙伴…如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有243只蜜蜂.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知下列各式:①f(|x|+1)=x2+1; ②$f(\frac{1}{{{x^2}+1}})=x$;③f(x2-2x)=|x|; ④f(|x|)=3x+3-x.其中存在函数f(x)对任意的x∈R都成立的是(  )
A.①④B.③④C.①②D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的定义域为[0,2],则函数g(x)=$\frac{f(2x)}{x-1}$的定义域为(  )
A.[0,1)∪(1,4]B.[0,1)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一组数据如表:
x12345
y1.31.92.52.73.6
(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案