精英家教网 > 高中数学 > 题目详情
1.一次抛掷不同的两枚骰子,则恰好出现点数之和为7的结果的种数是(  )
A.36B.3C.6D.12

分析 一次抛掷不同的两枚骰子,利用列举法能求出恰好出现点数之和为7的结果的种数.

解答 解:一次抛掷不同的两枚骰子,
则恰好出现点数之和为7的结果有:
(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),
共有6种.
故选:C.

点评 本题考查试验结果种数的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知两圆C1:x2+y2-2x-6y-1=0,C2:x2+y2-10x-12y+45=0
(1)求证:圆C1和圆C2相交;
(2)求圆C1和圆C2的公共弦所在直线方程和公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,多面体ABCDEF中,底面ABCD是边长为2a的菱形,侧面ADEF为矩形,且AF=$\frac{1}{2}$AD,∠ABC=60°,AF⊥平面ABCD,点G和H分别是BC、BF上的点.
(1)若$\frac{BG}{BC}$=$\frac{BH}{BF}$,求证:BD⊥GH;
(2)若BG=2GC,在线段BF上是否存在一点H,使直线GH与平面ACE所成角为30°,若存在,求出点H的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A,B,C的坐标分别是A(1,$\frac{6}{5}$),B(sinα,cosα),C(0,$\frac{1}{5}$)其中α∈(-π,0),请问:是否存在实数λ,使得$\overrightarrow{AB}$=λ$\overrightarrow{CA}$成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
不常喝常喝合计
肥胖xy50
不肥胖401050
合计AB100
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为$\frac{3}{5}$
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
附:参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2≥k)0.050.0250.0100.0050.001
k3.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用0,1,2,3,4,5,6组成没有重复数字的4位数.
(1)这样的4位数有多少个?
(2)这样的4位数是奇数的有多少个?偶数有多少个?
(3)这样的4位数被5整除的有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有如下4个结论,
①幂函数的图象必过定点(1,1);
②已知x1,x2满足2${\;}^{{x}_{1}}$+x1-2=0,log2x2+x2-2=0,则x1+x2=2;
③已知函数f(x)=logax+$\frac{1}{{x}^{2}+1}$,(a>0且a≠1),f(5)=1,则f(0.2)=1;
④函数f(x)=|x2-1|的增区间是[-1,0]∪[1,+∞),
其中正确结论的代号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程sinx+$\sqrt{3}$cosx=1的解为$\left\{{x|x=kπ+{{({-1})}^k}\frac{π}{6}-\frac{π}{3},k∈Z}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A是双曲线y=$\frac{2017}{x}$上一动点,自A向椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1引两切线AP,AQ,切点分别为P,Q,若椭圆的左焦点为F,求$\frac{|AF{|}^{2}}{|PF||QF|}$的最小值.

查看答案和解析>>

同步练习册答案