精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足,a1=0,数列{bn}为等差数列,且an+1=an+bn,b15+b16=15,则a31=225.

分析 由已知得an+1=b1+b2+b3+…+bn,从而a31=$\frac{30}{2}({b}_{1}+{b}_{30})$=15(b15+b16),由此能求出结果.

解答 解:∵数列{an}满足,a1=0,数列{bn}为等差数列,且an+1=an+bn,b15+b16=15,
∴an+1=b1+b2+b3+…+bn
∴a31=b1+b2+b3+…+b30
=$\frac{30}{2}({b}_{1}+{b}_{30})$=15(b15+b16)=15×15=225.
故答案为:225.

点评 本题考查数列的第31项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知四棱锥P-ABCD的外接球为球O,底面ABCD是矩形,面PAD⊥底面ABCD,且PA=PD=AD=2,AB=4,则球O的表面积为$\frac{64}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,若a1,a9是方程2x2-5x+2=0的两根,则a4•a6等于(  )
A.5B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的偶函数,且在区间(0,+∞)上单调递减,若实数a满足f(log2$\frac{1}{a}$)<f(-$\frac{1}{2}$),则a的取值范围是(0,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的程序框图中,如输入m=4,t=3,则输出y=(  )
A.61B.62C.183D.184

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρ•cosθ+4)•cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|-|JK||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-3x+alnx+4(a>0)
(1)若f(x)在其定义域是单调增函数,求实数a的取值范围;
(2)当a=2时,函数y=f(x)在[en,+∞)(n∈Z)有零点,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF=1.
(1)求椭圆的方程;
(2)求证:直线AC,BD的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从1,2,3,4,5这五个数字中任取三个不同的数字,求下列事件的概率.
(1)A={三个数字中不含1和5}
(2)B={三个数字中含1或5}.

查看答案和解析>>

同步练习册答案