【题目】某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设
米,试问
取何值时,运动场所面积最大?
![]()
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,
,计算结果取整数)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a-
)x2-2ax+lnx,a∈R
(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;
(2)求g(x)=f(x)+ax在x=1处的切线方程;
(3)若在区间(1,+∞)上,f(x)<0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
的图象在
处的切线与直线
平行.
(Ⅰ)求实数
的值;
(Ⅱ)若函数
存在单调递减区间,求实数
的取值范围;
(Ⅲ)设
(
)是函数
的两个极值点,若
,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
表示双曲线,命题
表示椭圆.
⑴若命题
为真命题,求实数
的取值范围.
⑵判断命题
为真命题是命题
为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,双曲线
的右顶点为A,右焦点为F,点B在双曲线的右支上,矩形OFBD与矩形AEGF相似,且矩形OFBD与矩形AEGF的面积之比为2:1,则该双曲线的离心率为
![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
.
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,求二面角A-PB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com