精英家教网 > 高中数学 > 题目详情
8.y=tan(ωx+φ)的最小正周期为$\frac{π}{|ω|}$.

分析 直接利用正切函数的周期公式求解即可.

解答 解:y=tan(ωx+φ)的最小正周期为:$\frac{π}{\left|ω\right|}$.
故答案为:$\frac{π}{|ω|}$.

点评 本题考查三角函数的周期的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.化简:
(1)sin(-1071°)•sin99°+sin(-171°)•sin(-261°).
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α);
(3)$\frac{sin(-2π-α)•tan(π-α)}{cos(-2π+α)•tan(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:
(1)$\overrightarrow{OA}$=(3,4),$\overrightarrow{OB}$=(7,12),$\overrightarrow{OC}$=(9,16).求证:A,B,C三点共线;
(2)设$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),若点A,B,C能构成三角形,求实数k所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{-2x,(-3≤x<2)}\\{{2}^{x-1},(2<x≤3)}\end{array}\right.$,
(1)求函数f(x)的定义域和值域;
(2)作出函数f(x)的图象,并指出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A={x|y=$\frac{1}{x-2}$+1nx},B={y|y=$\sqrt{16-{2}^{x}}$},则A∩B=(  )
A.(0,4]B.[0,2)U(2,4)C.(0,2)U(2,4)D.[0,2)U(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求经过P(0,0)、Q(0,1)、R(2,0)三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知△ABC中,点M在线段AC上,点P在线段BM上且满足$\frac{AM}{MC}=\frac{MP}{PB}$=2,若$|\overrightarrow{AB}|$=2,$|\overrightarrow{AC}|$=3,∠BAC=120°,则$\overrightarrow{AP}•\overrightarrow{BC}$的值为(  )
A.-2B.2C.$\frac{2}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为30°,|$\overrightarrow{a}$|=$\sqrt{3}$,$\overrightarrow{b}$为单位向量,$\overrightarrow{c}$=t$\overrightarrow{a}$+(1-t)$\overrightarrow{b}$,则|$\overrightarrow{c}$|的最小值为$\frac{\sqrt{3}}{2}$.若$\overrightarrow{b}$•$\overrightarrow{c}$=0,则t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,正方形ABCD的边长为2,M,N分别为边BC,CD上的动点,且∠MAN=45°,则$\overrightarrow{AM}•\overrightarrow{AN}$的最小值为8($\sqrt{2}$-1).

查看答案和解析>>

同步练习册答案