精英家教网 > 高中数学 > 题目详情
3.动直线y=k(x-$\sqrt{2}$)与曲线y=$\sqrt{1-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取得最大值时,k的值为$-\frac{{\sqrt{3}}}{3}$.

分析 由题意可得动直线y=k(x-$\sqrt{2}$)过定点($\sqrt{2}$,0),曲线y=$\sqrt{1-{x^2}}$表示单位圆x2+y2=1的上半圆,可得当∠AOB=$\frac{π}{2}$时,S△AOB面积最大,由点到直线的距离公式可得k的方程,解方程可得.

解答 解:由题意可得动直线y=k(x-$\sqrt{2}$)过定点($\sqrt{2}$,0),
曲线y=$\sqrt{1-{x^2}}$表示单位圆x2+y2=1的上半圆,
∵△AOB的面积S=$\frac{1}{2}$|OA||OB|sin∠AOB=$\frac{1}{2}$×1×1×sin∠AOB,
当∠AOB=$\frac{π}{2}$时,S△AOB面积最大.
此时O到AB的距离d=$\frac{\sqrt{2}}{2}$.
直线AB方程可化为即kx-y-$\sqrt{2}$k=0,k<0
由距离公式可得$\frac{|-\sqrt{2}k|}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{2}}{2}$,解得k=$-\frac{{\sqrt{3}}}{3}$,
故答案为:$-\frac{{\sqrt{3}}}{3}$

点评 本题考查直线和圆的位置关系,涉及三角形的面积公式和数形结合的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:选择题

将函数的图象向左平移个单位长度,所得图象对应的函数( )

A.在区间上单调递减 B.在区间上单调递增

C.在区间上单调递减 D.在区间上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线${x^2}=4\sqrt{3}y$的准线,且经过点$P(-1,\frac{3}{2})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l的方程为x=-4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知不共线向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b∈R,a2-2ab+5b2=4,则a+b的取值范围为$[{-2\sqrt{2},2\sqrt{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,$\frac{1}{2}$)到焦点的距离为1.
(Ⅰ)求抛物线C的方程
(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*
(ⅰ)记△AOB的面积为f(n),求f(n)的表达式
(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2,依次成等差数列.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)P,Q为椭圆上的两个不同的动点,且.kBP•kBQ=e2
(i)试证直线PQ过定点M,并求出M点坐标;
(ii)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是5厘米.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案