精英家教网 > 高中数学 > 题目详情
19.已知a,b∈R,a2-2ab+5b2=4,则a+b的取值范围为$[{-2\sqrt{2},2\sqrt{2}}]$.

分析 设a+b=t,得b=t-a,代入a2-2ab+5b2=4后化为关于a的一元二次方程,由a有实根得判别式大于等于0,转化为关于t的不等式得答案.

解答 解:设a+b=t,则b=t-a,
代入a2-2ab+5b2=4,得a2-2a(t-a)+5(t-a)2-4=0,
整理得:8a2-12at+5t2-4=0.
由△=(-12t)2-32(5t2-4)≥0,得t2≤8.
即$-2\sqrt{2}≤t≤2\sqrt{2}$.
∴a+b的取值范围为$[{-2\sqrt{2},2\sqrt{2}}]$.
故答案为:$[{-2\sqrt{2},2\sqrt{2}}]$.

点评 本题给出关于正数a、b的等式,求a+b的最小值.考查了利用换元法和一元二次方程有实根求解参数范围问题,考查数学转化思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:填空题

已知偶函数上是增函数,则满足的实数的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sinx+sin($\frac{2π}{3}$-x)的图象的一条对称轴为(  )
A.x=$\frac{π}{2}$B.x=πC.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,且a1+a2=10,S4=36,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量是(  )
A.$(-\frac{1}{2},-2)$B.(-1,-1)C.$(-\frac{1}{2},-1)$D.(2,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设F1,F2分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点A为椭圆E的左顶点,点B为椭圆E的上顶点,且|AB|=2.
(Ⅰ)若椭圆E的离心率为$\frac{{\sqrt{6}}}{3}$,求椭圆E的方程;
(Ⅱ)设P为椭圆E上一点,且在第一象限内,直线F2P与y轴相交于点Q.若以PQ为直径的圆经过点F1,证明:点P在直线x+y-2=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.动直线y=k(x-$\sqrt{2}$)与曲线y=$\sqrt{1-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取得最大值时,k的值为$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在四棱柱ABCD-A1B1C1D1中,AA1⊥平面A1B1C1D1,底面A1B1C1D1是边长为a的正方形,侧棱AA1的长为b,E为侧棱BB1上的动点(包括端点),则(  )
A.对任意的a,b,存在点E,使得B1D⊥EC1
B.当且仅当a=b时,存在点E,使得B1D⊥EC1
C.当且仅当a≥b时,存在点E,使得B1D⊥EC1
D.当且仅当a≤b时,存在点E,使得B1D⊥EC1

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:选择题

设复数满足,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

选修4-5:不等式选讲

设函数

(1)若,且对任意恒成立,求实数的取值范围;

(2)若,且关于的不等式有解,求实数的取值范围.

查看答案和解析>>

同步练习册答案