精英家教网 > 高中数学 > 题目详情
15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2,依次成等差数列.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)P,Q为椭圆上的两个不同的动点,且.kBP•kBQ=e2
(i)试证直线PQ过定点M,并求出M点坐标;
(ii)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.

分析 (Ⅰ)由题意,b=1,a2+b2=2c2,结合c2+b2=a2,可求椭圆的标准方程和离心率e;
(Ⅱ)(i)设直线PQ的方程为x=my+n,代入椭圆方程,利用韦达定理,结合kBP•kBQ=e2,求出m,n的关系,即可得出直线PQ过定点M,并求出M点坐标;
(ii)确定P或Q在以BM为直径的圆T,与椭圆方程联立,即可得出结论.

解答 解:(Ⅰ)由题意,b=1,a2+b2=2c2
∵c2+b2=a2
∴a2=3,c2=2,
∴$\frac{{x}^{2}}{3}+{y}^{2}=1$,e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$;
(Ⅱ)(i)设直线PQ的方程为x=my+n,设P(x1,y1),Q(x2,y2),
直线方程代入椭圆方程可得(3+m2)y2+2mny+n2-3=0,
∴y1+y2=-$\frac{2mn}{3+{m}^{2}}$,y1y2=$\frac{{n}^{2}-3}{3+{m}^{2}}$,
∴kBP•kBQ=$\frac{{y}_{1}-1}{{x}_{1}}$•$\frac{{y}_{2}-1}{{x}_{2}}$=e2=$\frac{2}{3}$,
整理可得n2-2mn-3m2=0
∴n=-m或n=3m,
∴直线PQ的方程为x=my-m=m(y-1)(舍去)或x=my+3m=m(y+3),
∴直线PQ过定点(0,-3);
(ii)由题意,∠PBQ≠90°,若∠BPM=90°或∠BQM=90°,则P或Q在以BM为直径的圆T上,即在圆x2+(y+1)2=4上,与椭圆方程联立得y=0或1(舍去),
∴P或Q只可以的椭圆的左右顶点,
∴直线PQ的斜率为±$\sqrt{3}$.

点评 本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知M($\frac{9}{2}$,0),N(2,0),曲线C上的任意一点P满足:$\overrightarrow{MN}$•$\overrightarrow{MP}$=$\frac{15}{4}$|$\overrightarrow{PN}$|.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴的交点分别为A、B,过N的任意直线(直线与x轴不重合)与曲线C交于R、Q两点,直线AR与BQ交于点S.问:点S是否在同一直线上?若是,请求出这条直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,且a1+a2=10,S4=36,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量是(  )
A.$(-\frac{1}{2},-2)$B.(-1,-1)C.$(-\frac{1}{2},-1)$D.(2,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.动直线y=k(x-$\sqrt{2}$)与曲线y=$\sqrt{1-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取得最大值时,k的值为$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在四棱柱ABCD-A1B1C1D1中,AA1⊥平面A1B1C1D1,底面A1B1C1D1是边长为a的正方形,侧棱AA1的长为b,E为侧棱BB1上的动点(包括端点),则(  )
A.对任意的a,b,存在点E,使得B1D⊥EC1
B.当且仅当a=b时,存在点E,使得B1D⊥EC1
C.当且仅当a≥b时,存在点E,使得B1D⊥EC1
D.当且仅当a≤b时,存在点E,使得B1D⊥EC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,且△ABC的面积为$\frac{3}{2}$,则∠BAC=150°.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:选择题

设复数满足,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.棱长为1的正方体ABCD-A1B1C1D1中,点M,N,P分别为AB1,BC1,DD1的中点,给出下列结论:
①异面直线AB1,BC1所成的角为$\frac{π}{3}$
②MN∥平面ABCD
③四面体A-A1B1N的体积为$\frac{1}{4}$
④MN⊥BP
则正确结论的序号为①②④.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:选择题

已知等差数列的前项和为,且.在区间内任取一个实数作为数列的公差,则的最小值仅为的概率为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案