精英家教网 > 高中数学 > 题目详情

【题目】中, 的中点,将沿折起,使间的距离为则点到平面的距离为(

A. B. C. 1 D.

【答案】A

【解析】由已知得AB=2,AM=MB=MC=1,BC=

AMC为等边三角形,取CM中点D,则ADCM,ADBCE,则AD=,DE=,CE=.

折起后,由BC2=AC2+AB2,知BAC=90

cosECA=,AE2=CA2+CE22CACEcosECA=,于是AC2=AE2+CE2.

∴∠AEC=90.

AD2=AE2+ED2,AE平面BCM,即AE是三棱锥ABCM的高,AE=

设点M到面ABC的距离为h,则

SBCM=

VABCM=VMABC,可得××=×××1×h,h=

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:

x(单位:千元)

2

4

7

17

30

y(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据 (yi i2=1.15) 参考公式:相关指数R2=1﹣
回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = = x,参考数据:ln40=3.688, =538.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S4=﹣24,a1+a5=﹣10. (Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤﹣24},求集合A中的所有元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格. (Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为 ,比较 的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:

(1)PA⊥底面ABCD;

(2)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第n个几何体的表面积是个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABCA1B1C1中,AC3BC4AB5AA14,点DAB的中点.

(1)求证:AC1平面CDB1

(2)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为 . (Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x﹣1)的定义域是(
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]

查看答案和解析>>

同步练习册答案