分析 利用a2+b2≥$\frac{{(a+b)}^{2}}{2}$,求出代数式(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2的最小值.
解答 解:∵a2+b2≥2ab,
∴2(a2+b2)≥a2+b2+2ab=(a+b)2,
∴a2+b2≥$\frac{{(a+b)}^{2}}{2}$,当且仅当a=b时“=”成立;
∴${(x+\frac{1}{x})}^{2}$+${(y+\frac{1}{y})}^{2}$≥$\frac{1}{2}$${(x+\frac{1}{x}+y+\frac{1}{y})}^{2}$
=$\frac{1}{2}$${(4+\frac{1}{x}+\frac{1}{y})}^{2}$
=$\frac{1}{2}$${(4+\frac{x+y}{xy})}^{2}$
=$\frac{1}{2}$${(4+\frac{4}{xy})}^{2}$
=8${(1+\frac{1}{xy})}^{2}$;
又x+y=4,∴xy≤${(\frac{x+y}{2})}^{2}$=4,
即当x=y=2时,xy取得最大值4;
∴${(x+\frac{1}{x})}^{2}$+${(y+\frac{1}{y})}^{2}$≥8×${(1+\frac{1}{4})}^{2}$=$\frac{25}{2}$,
即(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2的最小值是$\frac{25}{2}$.
点评 本题考查了基本不等式的灵活应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 44ln11-9 | B. | 10+20ln11 | C. | 10+44ln11 | D. | 63+3ln11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=x3-x | C. | y=2x | D. | y=lg(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | 2 | D. | $\frac{8}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com