精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2-5n+4,第k项满足5<ak<8,则k等于(  )
A、4B、5C、6D、7
考点:数列的概念及简单表示法
专题:等差数列与等比数列
分析:由已知条件求出ak=Sk-Sk-1=2k-6.再由第k项满足5<ak<8,能求出k的值.
解答: 解:∵数列{an}的前n项和Sn=n2-5n+4,
∴ak=Sk-Sk-1=(k2-5k+4)-[(k-1)2-5(k-1)+4]
=2k-6.
∵第k项满足5<ak<8,
∴5<2k-6<8,解得
11
2
<k<7

∵k∈Z,∴k=6.
故选:C.
点评:本题考查实数的值的求法,是基础题,解题时要认真审题,注意数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直径为4cm的圆中,36°的圆心角所对的弧长是(  )
A、
5
cm
B、
5
cm
C、
π
3
cm
D、
π
2
cm

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C所对的边分别是a,b,c,已知A=60°,a=
6
,c=
5
,则b=(  )
A、
3-
5
2
B、
3+
5
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边为a,b,c,若a=1,b=
3
,B=120°,则A等于(  )
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
lnx,x>0
x+2,x<0
,则f(f(-1))=(  )
A、1B、0C、-1D、e

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“p∧q”为假,且“¬q”为假,则(  )
A、¬p∨q为假
B、p∨q为假
C、¬p∧q为真
D、p∧¬q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出了四个类比推理:
①由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若
a
b
c
为三个向量则(
a
b
)•
c
=
a
•(
b
c
)”
②已知△ABC周长为c,且它的内切圆半径为r,则三角形的面积为
1
2
cr.类比推出,若四面体D-ABC的表面积为s,内切球半径为r,则其体积是
1
3
sr
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,(C为复数集)则a-b>0⇒a>b”;
④经过圆x2+y2=r2上一点M(x0,y0)的切线方程为x0x+y0y=r2.类比上述性质,类比推出经过椭圆
x2
a2
+
y2
b2
=1上一点M(x0,y0)的切线方程为
x0x
a2
+
y0y
b2
=1
上述四个推理中,结论正确的是(  )
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x3-x2-m=0在[1,2]上有解,则实数m的取值范围是(  )
A、0<m≤2
B、0≤m≤2
C、0<m≤4
D、0≤m≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆中,过焦点且垂直于长轴的直线被椭圆截得的弦,叫做椭圆的通径.如图,已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,其离心率为
1
2
,通径长为3.
(1)求椭圆的方程;
(2)过F2的动直线l交椭圆于A、B两点,
(ⅰ)问在x轴上是否存在定点C,使
CA
CB
恒为常数?若存在,求出点C的坐标;若不存在,说明理由.
(ⅱ)延长BF1交椭圆于点M,I1、I2分别为△F1BF2、△F1MF2的内心,证明四边形F1I2F2I1与△MF2B的面积的比值恒为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案