精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边为a,b,c,若a=1,b=
3
,B=120°,则A等于(  )
A、30°B、45°
C、60°D、120°
考点:正弦定理
专题:三角函数的求值
分析:利用正弦定理列出 关系式,将a,b,sinB的值代入求出sinA的值,即可确定出A的度数.
解答: 解:在△ABC中,a=1,b=
3
,B=120°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
3
2
3
=
1
2

∵a<b,∴A<B,
则A=30°.
故选:A.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一种运算“*”对于正整数N满足以下运算性质:(1)1*1=1(2)(n+1)*1=n*1+1,则n*1=(  )
A、n
B、n+1
C、n-1
D、n2

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a5a6=2,a9a10=8,则a7a8=(  )
A、16B、±4C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β表示两个不同平面,l,m表示两条不同的直线,则下列命题正确的是(  )
A、若l⊥m,l?α,m?β,则α⊥β
B、若l⊥α,m∥β,α⊥β,则l⊥m
C、若l∥m,l?α,m⊥β,则α∥β
D、若l⊥α,m⊥β,α∥β,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,若sin2A+sin2B>sin2C,则△ABC是(  )
A、锐角三角形B、直角三角形
C、钝角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有白球3个,黑球4个,从中任取3个,
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为(  )
A、①B、②C、③D、④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2-5n+4,第k项满足5<ak<8,则k等于(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理正确的是(  )
A、如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖
B、已知三个不同的平面α,β,γ,如果α⊥β,β⊥γ,那么α⊥γ
C、已知非零向量
a
b
c
,如果
a
b
=
a
c
,那么
b
=
c
D、如果复数z满足z2>0,则z∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
x2
25
+
y2
16
=1的右焦点F作直线交椭圆C于A、B两点,已知AB=8,求直线AB的方程.

查看答案和解析>>

同步练习册答案