| A. | lnx0=$\frac{1}{{\sqrt{ab}}}$ | B. | lnx0≤$\frac{1}{{\sqrt{ab}}}$ | C. | lnx0≥$\frac{1}{{\sqrt{ab}}}$ | D. | lnx0<$\frac{1}{{\sqrt{ab}}}$ |
分析 猜想判断lnx0<$\frac{1}{\sqrt{ab}}$,换元转化为h(t)=2lnt-t+$\frac{1}{t}$,利用导数证明.
解答 解:由题知lnx0=$\frac{lnb-lna}{b-a}$,
猜想:lnx0<$\frac{1}{\sqrt{ab}}$,
证明如下:$\frac{lnb-lna}{b-a}$<$\frac{1}{\sqrt{ab}}$,
令t=$\sqrt{\frac{b}{a}}$>1,原式等价于lnt2<t-$\frac{1}{t}$,
2lnt-t+$\frac{1}{t}$<0,
令h(t)=2lnt-t+$\frac{1}{t}$(t>1),
则h′(t)=$\frac{2}{t}$-1-$\frac{1}{{t}^{2}}$=-$\frac{{(t-1)}^{2}}{t}$<0,
∴h(t)=2lnt-t+$\frac{1}{t}$<h(1)=0,
得证lnx0<$\frac{1}{\sqrt{ab}}$,
故选:D.
点评 本题主要是在新定义下考查二次方程根的问题.在做关于新定义的题目时,一定要先认真的研究定义理解定义,再按定义做题.
科目:高中数学 来源: 题型:选择题
| A. | y=-2x+1 | B. | y=2x+1 | C. | y=-x+1 | D. | y=x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 5 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$i | C. | $\frac{\sqrt{5}}{5}$ | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5,15,25,35,45 | B. | 25,45,65,85,100 | C. | 10,30,50,70,90 | D. | 23,33,45,53,63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com