精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{m}$=(1,$\sqrt{3}$sinωx+cosωx),$\overrightarrow{n}$=(f(x)+$\frac{1}{2}$,-cosωx),其中ω>0,且$\overrightarrow{m}$⊥$\overrightarrow{n}$,又f(x)的一条对称轴为x=$\frac{2π}{3}$,当ω取最小值时.
(1)求f(x)的单调递增区间;
(2)在△ABC中,若f(A)=$\frac{\sqrt{3}}{2}$,求sinB+sinC的取值范围.

分析 (1)由数量积运算和三角函数公式可得f(x)=sin(2ωx+$\frac{π}{6}$),由对称性可得ω的最小值为$\frac{1}{4}$,可得f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$),整体法可得f(x)的单调递增区间;
(2)由题意和三角形的知识可得A=$\frac{π}{3}$,进而可得C=$\frac{2π}{3}$-B,代入化简可得sinB+sinC=$\sqrt{3}$sin(B+$\frac{π}{6}$),由B∈(0,$\frac{2π}{3}$)和三角函数的值域可得.

解答 解:(1)∵$\overrightarrow{m}$=(1,$\sqrt{3}$sinωx+cosωx),$\overrightarrow{n}$=(f(x)+$\frac{1}{2}$,-cosωx),
又∵$\overrightarrow{m}$⊥$\overrightarrow{n}$,∴$\overrightarrow{m}•\overrightarrow{n}$=f(x)+$\frac{1}{2}$-cosωx($\sqrt{3}$sinωx+cosωx)=0,
∴f(x)=-$\frac{1}{2}$+cosωx($\sqrt{3}$sinωx+cosωx)=-$\frac{1}{2}$+$\sqrt{3}$sinωxcosωx+cos2ωx)
=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1+cos2ωx}{2}$=$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$cos2ωx=sin(2ωx+$\frac{π}{6}$).
∵f(x)的一条对称轴为x=$\frac{2π}{3}$,∴2ω•$\frac{2π}{3}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
∴ω=$\frac{3k}{4}$+$\frac{1}{4}$,结合ω>0可得ω的最小值为$\frac{1}{4}$,∴f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得4kπ-$\frac{4π}{3}$≤x≤4kπ+$\frac{2π}{3}$,
∴f(x)的单调递增区间为[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z;
(2)∵在△ABC中,若f(A)=sin($\frac{1}{2}$A+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}$A+$\frac{π}{6}$=$\frac{π}{3}$,∴A=$\frac{π}{3}$,∴C=$\frac{2π}{3}$-B,
∴sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=sinB+$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB
=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],∴$\sqrt{3}$sin(B+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,$\sqrt{3}$],
∴sinB+sinC的取值范围为($\frac{\sqrt{3}}{2}$,$\sqrt{3}$]

点评 本题考查三角函数恒等变换,涉及平面向量的数量积和三角函数的单调性和值域,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设x1与x2分别是方程2x2+bx+c=0和-2x2+bx+c=0的一个根,且x1x2≠0.求证:方程x2+bx+c=0有且只有一根介于x1和x2之间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某底面为正方形的四棱锥的三视图,则该四棱锥的表面积为(  )
A.$\sqrt{2}$+$\sqrt{6}$B.2+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{6}$D.2+3$\sqrt{2}$+$\sqrt{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设抛物线y2=2px(p>0),M(a,0),N(b,0)是x轴正半轴上的两个顶点,过M作斜率为k1的直线与抛物线交于A,B两点,延长AN,BN分别于抛物线交于C,D两点,若直线CD的斜率为k2,则$\frac{{k}_{1}}{{k}_{2}}$=$\frac{b}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.当0<α<$\frac{π}{4}$时,sinα<cosα(比较大小)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.比较下列两个数的大小:
(1)sin512°和sin145°;
(2)cos760°和cos(-770°)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设经过定点P(a,0)的直线与抛物线y2=6x相交于A,B两点,若$\frac{1}{|PA{|}^{2}}+\frac{1}{|PB{|}^{2}}$为定值,则a=(  )
A.6B.3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若方程x2-2ax+a+2=0的一根在区间(0,1)内,另一根在(2,+∞),则实数a的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线3x+2y-4=0过椭圆C的顶点,且椭圆C的焦点恰好是双曲线x2-y2=5的顶点.
(1)求椭圆C的方程;
(2)已知经过定点M(2,0),斜率存在且不为0的直线l交椭圆C于A、B两点,试问在x轴上是否存在另一个定点P,使得PM始终平分∠APB,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案