精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an}的首项a1=1,公差d≠0,其中a3,a6,a12成等比数列
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}1(n=1)\\ \frac{1}{{{a_n}^2-1}}(n≥2)\end{array}$,数列{bn}的前n项和为Sn,求证:Sn<$\frac{7}{4}$.

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用“裂项求和”方法即可得出.

解答 解:(1)由a3,a6,a12成等比数列及a1=1得,${a_6}^2={a_3}•{a_{12}}$,
即(1+5d)2=(1+2d)•(1+11d),
∴d2=3d,∵d≠0,∴d=1,
∴an=1+(n-1)=n.
(2)证明:由(1)及已知,当n≥2时,${b_n}=\frac{1}{{{n^2}-1}}=\frac{1}{(n-1)(n+1)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1})$,
于是:Sn=b1+b2+…+bn
=1+$\frac{1}{2}$$[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-2}-\frac{1}{n})$+$(\frac{1}{n-1}-\frac{1}{n+1})]$
=1+$\frac{1}{2}$$(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1})$=$\frac{7}{4}$-$\frac{1}{2}$$(\frac{1}{n}+\frac{1}{n+1})$,
∵n∈N*,∴$\frac{1}{n}+\frac{1}{n+1}>0$,
∴${S_n}<\frac{7}{4}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AC=CE=3,AB=4,则AD 的长为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为R满足f(-x)=f(x),且图象关于直线x=2对称,若0≤x≤2时,f(x)=$\frac{2x}{4{x}^{2}+1}$.
(1)求证:函数f(x)是周期函数;
(2)求使f(x)=$\frac{1}{2}$在[0,2016]上的所有x的个数,并求在[0,40]上的所有x值的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=|x|+1是(  )
A.在(0,+∞)上单调递增的奇函数B.在(0,+∞)上单调递减的奇函数
C.在(0,+∞)上单调递增的偶函数D.在(0,+∞)上单调递减的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.条件p:a≤3,条件q:a(a-3)≤0,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示的四边形ABCD,已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}∥\overrightarrow{DA}$且-2≤x<1,求函数y=f(x)的值域;
(2)若$\overrightarrow{BC}∥\overrightarrow{DA}$且$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1)
求:(Ⅰ)$\overrightarrow{a}$•$\overrightarrow{b}$;|$\overrightarrow{a}$+$\overrightarrow{b}$|;                     
(Ⅱ)$\overrightarrow{a}$和$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设常数a≥0,函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$是奇函数.
(1)求a的值;
(2)求f(x)>3成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)关于x的方程x2+2a|x|+4a2-3=0恰有三个不相等的实数根,求实数a的值.
(2)关于x的方程x2+2a|x|+4a2-3=0在[-1,1]上恰有两个不等实数根,求实数a的值.

查看答案和解析>>

同步练习册答案