分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用“裂项求和”方法即可得出.
解答 解:(1)由a3,a6,a12成等比数列及a1=1得,${a_6}^2={a_3}•{a_{12}}$,
即(1+5d)2=(1+2d)•(1+11d),
∴d2=3d,∵d≠0,∴d=1,
∴an=1+(n-1)=n.
(2)证明:由(1)及已知,当n≥2时,${b_n}=\frac{1}{{{n^2}-1}}=\frac{1}{(n-1)(n+1)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1})$,
于是:Sn=b1+b2+…+bn
=1+$\frac{1}{2}$$[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-2}-\frac{1}{n})$+$(\frac{1}{n-1}-\frac{1}{n+1})]$
=1+$\frac{1}{2}$$(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1})$=$\frac{7}{4}$-$\frac{1}{2}$$(\frac{1}{n}+\frac{1}{n+1})$,
∵n∈N*,∴$\frac{1}{n}+\frac{1}{n+1}>0$,
∴${S_n}<\frac{7}{4}$.
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(0,+∞)上单调递增的奇函数 | B. | 在(0,+∞)上单调递减的奇函数 | ||
| C. | 在(0,+∞)上单调递增的偶函数 | D. | 在(0,+∞)上单调递减的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com