精英家教网 > 高中数学 > 题目详情
15.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求a的值组成的集合C.
(2)若A∪B=B,求a的值.

分析 (1)由A∩B=B,知B是A的子集,对集合B进行分类讨论:①若B为空集,②若B为单元集,③若B=A={-4,0},由此求得a的值即可.
(2)先化简集合A,再由A∪B=B知A是B的子集,由此求得a的值.

解答 解:(1)若A∩B=B,则
①若B为空集,则△=4(a+1)2-4(a2-1)=8a+8<0,
则a<-1;
②若B为单元集,则△=4(a+1)2-4(a2-1)=8a+8=0
解得:a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得:x2=0,则x=0,即B=0符合要求;
③若B=A={-4,0},
即x2+2(a+1)x+a2-1=0的两根分别为-4、0,
则有a2-1=0且2(a+1)=4,
则a=1.
综上所述,a≤-1或a=1.
(2)A={-4,0},
∵若A∪B=B,则B?A={-4,0},
∴0和-4是方程x2+2(a+1)x+a2-1=0的两根
∴0-4=-2(a+1),且0×(-4)=a2-1=0
解得:a=1或a=-1(舍去).

点评 本小题主要考查子集与交集、并集运算的转换、一元二次方程的解等基础知识,考查分类讨论思想、方程思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知α∈(0,π),sinα+cosα=$\frac{{\sqrt{3}}}{3}$,则cos2α=(  )
A.±$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{5}}}{3}$C.-$\frac{{\sqrt{5}}}{3}$D.±$\frac{{\sqrt{5}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=x+m,圆x2+y2=4.
(1)若直线与圆相切,求m的值;
(2)当m=2时,直线与圆交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知命题p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两点A(2,-1),B(-1,2),若直线y=kx-1与线段AB相交,则斜率k的取值范围是k≤-3或k≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{lnx}{x}$的单调递减区间是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.(e,+∞)D.(0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点D(-2,0)为椭圆C的左顶点,点D与椭圆C的短轴端点的距离为$\sqrt{5}$,过点M(1,0)的直线l与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)是否存在直线l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,$(2+i)\overline z=-1+2i$,则复数z=(  )
A.iB.-iC.$\frac{4}{3}+i$D.$\frac{4}{3}-i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=x•cosx-sinx,则(  )
A.f(-3)+f(2)>0B.f(-3)+f(2)<0C.f(-3)+f(2)=0D.f(-3)-f(2)<0

查看答案和解析>>

同步练习册答案