精英家教网 > 高中数学 > 题目详情
5.若椭圆x2+my2=1的离心率为$\frac{\sqrt{3}}{2}$,则m为(  )
A.4B.$\frac{1}{4}$C.3D.4 或$\frac{1}{4}$

分析 首先将方程转化成标准方程,进而能够得出a2、b2,然后求出m,从而得出长半轴长.

解答 解:椭圆x2+my2=1即 $\frac{{y}^{2}}{\frac{1}{m}}$+x2=1,当椭圆焦点在y轴上时,
∴a2=$\frac{1}{m}$,b2=1,
由c2=a2-b2得,c2=$\frac{1-m}{m}$,
∵$\frac{{c}^{2}}{{a}^{2}}$=1-m=$\frac{3}{4}$ 得m=$\frac{1}{4}$,
∴则m为$\frac{1}{4}$,
当椭圆焦点在x轴上时,b2=$\frac{1}{m}$,a2=1,
∴$\frac{m-1}{m}=\frac{3}{4}$,可得m=4.
故选:D.

点评 本题考查了椭圆的标准方程和简单性质,此题要注意椭圆在x轴和y轴两种情况,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且θ∈(0,π),求θ;
(2)若|3$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-3$\overrightarrow{b}$|,求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{lo{g}_{2}(2x-1)}{\sqrt{x+1}}$的定义域是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={-2,-1,0,1,2},集合A={x∈Z|x2+x-2<0},则∁UA=(  )
A.{-2,1,2}B.{-2,1}C.{1,2}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{x}$+x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的有(  )
①命题?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“对?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要条件;
③若曲线C上的所有点的坐标都满足方程f(x,y)=0,则称方程f(x,y)=0是曲线C的方程;
④十进制数66化为二进制数是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.1 887与2 091的最大公约数是51.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数g(x)是y=ax(a>0且a≠1)的反函数,若函数f(x)=b+g(x)的定义域和值域都是[1,3],则$\frac{a}{b}$=(  )
A.$\sqrt{3}$B.$\sqrt{3}$或$\frac{\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{9}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=2x+x-5的零点在区间(a,b)(a,b是整数且b-a=1)内,则a+b=3.

查看答案和解析>>

同步练习册答案