精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=loga$\frac{x+1}{x-1}$(a>0,a≠1).
(1)当a>1时,讨论f(x)的奇偶性,并证明函数f(x)在(1,+∞)上为单调递减;
(2)当x∈(n,a-2)时,是否存在实数a和n,使得函数f(x)的值域为(1,+∞),若存在,求出实数a与n的值,若不存在,说明理由.

分析 (1)直接利用函数单调性与奇偶性的定义判断;
(2)令$t=\frac{x+1}{x-1}$=$\frac{x-1+2}{x-1}=1+\frac{2}{x-1}$,x∈(n,a-2),当a>1时,要使f(x)的值域为(1,+∞),则须t∈(a,+∞),令$\frac{{x}_{0}+1}{{x}_{0}-1}=a$,解得${x}_{0}=\frac{a+1}{a-1}$.可得x∈(1,$\frac{a+1}{a-1}$).则$\left\{\begin{array}{l}{n=1}\\{\frac{a+1}{a-1}=a-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{n=1}\\{a=2+\sqrt{3}}\end{array}\right.$;当0<a<1时,t∈(0,a),则x∈($\frac{a+1}{a-1},-1$),得$\left\{\begin{array}{l}{a-2=-1}\\{\frac{a+1}{a-1}=n}\end{array}\right.$,(不合题意).由此可得存在实数n=1,a=$2+\sqrt{3}$,当x∈(n,a-2)时,函数f(x)的值域为(1,+∞).

解答 解:(1)f(x)的定义域为{x|x<-1或x>1},关于原点对称,
又f(-x)=$lo{g}_{a}\frac{1-x}{-1-x}=lo{g}_{a}\frac{x-1}{1+x}=-lo{g}_{a}\frac{x+1}{x-1}=-f(x)$,∴f(x)为奇函数,
证明:当a>1时,设1<x1<x2,则
f(x1)-f(x2)=$lo{g}_{a}\frac{{x}_{1}+1}{{x}_{1}-1}-lo{g}_{a}\frac{{x}_{2}+1}{{x}_{2}-1}$=$lo{g}_{a}\frac{({x}_{1}+1)({x}_{2}-1)}{({x}_{1}-1)({x}_{2}+1)}$,
∵$\frac{({x}_{1}+1)({x}_{2}-1)}{({x}_{1}-1)({x}_{2}+1)}-1=\frac{({x}_{1}+1)({x}_{2}-1)-({x}_{1}-1)({x}_{2}+1)}{({x}_{1}-1)({x}_{2}+1)}$=$\frac{2({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}+1)}>0$,
∴$\frac{({x}_{1}+1)({x}_{2}-1)}{({x}_{1}-1)({x}_{2}+1)}$>1,又a>1,∴loga$\frac{({x}_{1}+1)({x}_{2}-1)}{({x}_{1}-1)({x}_{2}+1)}$>0,则f(x1)>f(x2),
∴函数f(x)在(1,+∞)上为减函数;
(2)令$t=\frac{x+1}{x-1}$=$\frac{x-1+2}{x-1}=1+\frac{2}{x-1}$,x∈(n,a-2),
①当a>1时,要使f(x)的值域为(1,+∞),则须t∈(a,+∞),
令$\frac{{x}_{0}+1}{{x}_{0}-1}=a$,解得${x}_{0}=\frac{a+1}{a-1}$.∴x∈(1,$\frac{a+1}{a-1}$).
故有$\left\{\begin{array}{l}{n=1}\\{\frac{a+1}{a-1}=a-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{n=1}\\{a=2+\sqrt{3}}\end{array}\right.$;
②当0<a<1时,t∈(0,a),则x∈($\frac{a+1}{a-1},-1$),∴$\left\{\begin{array}{l}{a-2=-1}\\{\frac{a+1}{a-1}=n}\end{array}\right.$,(不合题意).
综上所述,存在实数n=1,a=$2+\sqrt{3}$,当x∈(n,a-2)时,函数f(x)的值域为(1,+∞).

点评 本题是函数的单调性与奇偶性的综合题,考查函数单调性与奇偶性的判定方法,考查了函数值域的求法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+x+1}{x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=xf(x)-$\frac{{{x^2}+x+a}}{x}$在[1,e]上是最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)如果当x≥1时,不等式f(x)≥$\frac{a}{x+1}$+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a≠0,a∈R).
(1)若a=1,求函数f(x)的极值和单调区间;
(2)若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A(4,8)是抛物线C:y2=2px与直线l:y=k(x+4)的一个交点,则抛物线的焦点到直线l的距离是(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|a2x2-1|+ax,(其中a∈R,a≠0).
(1)当a<0时,若函数y=f(x)-c恰有x1,x2,x3,x4这4个零点,求x1+x2+x3+x4的值;
(2)当x∈[-1,1]时,求函数y=f(x)(其中a<0)的最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+1和函数g(x)=$\frac{bx-1}{{a}^{2}x+2b}$,
(1)若f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不等的实根x1,x2(x2<x2),则
①试判断函数f(x)在区间(-1,1)上是否具有单调性,并说明理由;
②若方程f(x)=0的两实根为x3,x4(x3<x4)求使x1<x2<x3<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值.
(2)判断并证明当a>1时,函数f(x)在R上的单调性;
(3)已知a=3,若f(3x)≥λ•f(x)对于x∈[1,2]时恒成立.请求出最大的整数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1和直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圆C1和直线C2的直角坐标方程.
(2)求圆C1和直线C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在坐标原点O,其图象关于y轴对称且经过点M(2,1).
(1)求抛物线C的方程;
(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;
(3)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1k2=-2时,试证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案