分析 由x的范围可得2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],结合正弦函数的图象可得.
解答 解:∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴当2x+$\frac{π}{4}$=$\frac{5π}{4}$即x=$\frac{π}{2}$时,sin(2x+$\frac{π}{4}$)取最小值-$\frac{\sqrt{2}}{2}$,y=3sin(2x+$\frac{π}{4}$)取最小值-$\frac{3\sqrt{2}}{2}$;
当2x+$\frac{π}{4}$=$\frac{π}{2}$即x=$\frac{π}{8}$时,sin(2x+$\frac{π}{4}$)取最大值1,y=3sin(2x+$\frac{π}{4}$)取最大值3.
故原函数的值域为[-$\frac{3\sqrt{2}}{2}$,3]
点评 本题考查三角函数的最值,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 频数 | 频率 |
| 1 | 1 | a |
| 2 | 6 | 0.3 |
| 3 | 7 | 0.35 |
| 4 | b | c |
| 5 | 4 | 0.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | (-∞,-1)∪(1,+∞) | C. | {-1,1} | D. | (-1,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com