精英家教网 > 高中数学 > 题目详情
8.已知f(x)=cos($\frac{π}{6}$-x),则函数f(x)的最小正周期为2,若f(α)=$\frac{\sqrt{3}}{3}$,则cos($\frac{5π}{6}$+α)-sin2(α-$\frac{π}{6}$)=-$\frac{2+\sqrt{3}}{3}$.

分析 由余弦函数周期公式即可求得f(x)的最小正周期,由f(x)=cos(x-$\frac{π}{6}$)-cos(x+$\frac{5π}{6}$)=$\frac{\sqrt{3}}{3}$,即cos(x+$\frac{5π}{6}$)=-$\frac{\sqrt{3}}{3}$,sin2(α-$\frac{π}{6}$)=1-cos2(α-$\frac{π}{6}$),即可求得结果.

解答 解:f(x)=cos($\frac{π}{6}$-x),由T=丨$\frac{2π}{ω}$丨=2,
f(x)=cos($\frac{π}{6}$-x)=cos(x-$\frac{π}{6}$)=-cos(x+$\frac{5π}{6}$),
f(α)=$\frac{\sqrt{3}}{3}$,即)=-cos(α-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
sin2(α-$\frac{π}{6}$)=1-cos2(α-$\frac{π}{6}$)=1-$\frac{1}{3}$=$\frac{2}{3}$,
cos($\frac{5π}{6}$+α)-sin2(α-$\frac{π}{6}$)=-$\frac{\sqrt{3}}{3}$-$\frac{2}{3}$=-$\frac{2+\sqrt{3}}{3}$,
故答案为:2,-$\frac{2+\sqrt{3}}{3}$.

点评 本题考查求余弦函数的周期,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.为了促进公民通过“走步”健身,中国平安公司推出的“平安好医生”软件,最近开展了“步步夺金”活动.活动规则:①使用平安好医生APP计步器,每天走路前1000步奖励0.3元红包,之后每2000步奖励0.1元红包,每天最高奖励不超过3元红包.②活动期间,连续3天领钱成功,从第4天起走路奖金翻1倍(乘以2),每天最高奖励不超过6元红包.某人连续使用此软件五天,并且每天领钱成功.这五天他走的步数统计如下:
   时间   第一天  第二天  第三天  第四天  第五天
   步数   13980  15456  17890  19012  21009
则他第二天获得的奖励红包为1.0元,这五天累计获得的奖励红包为8.0元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在学生会主席竞选中,要从10名男同学和5名女同学中任意选取两名担任主席,不同的选法有(  )
A.${C}_{10}^{1}$•${C}_{5}^{1}$种B.${A}_{10}^{1}$•${A}_{5}^{1}$种C.${C}_{15}^{2}$种D.${A}_{15}^{2}$种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=3sin(2x+$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=(ax3-bx)+ln($\sqrt{{x}^{2}+1}$-x)+5在[-2,2]上的最大值是M,最小值是m,则M+m的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)对?x∈R恒有f(x+1)=f(x-1)=-f(1-x)成立,且y=f(x)不是常值函数,则函数y=f(x)在区间[-3,3]上的零点至少有(  )
A.3个B.4个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,4),$\overrightarrow{c}$=(-7,2),求向量2$\overrightarrow{a}$-3$\overrightarrow{b}$+$\overrightarrow{c}$及它的模.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足a3+a6=9,a1a8=8,a1>a8,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y=sinx的图象上所有点的横坐标变为原有的$\frac{1}{2}$,纵坐标不变得函数f(x)的图象,函数f(x)的图象向左平移φ(0<φ<π)个单位,得函数y=sin(2x+$\frac{π}{4}$)的图象,则φ的值为$\frac{π}{8}$.

查看答案和解析>>

同步练习册答案