分析 设等比数列{an}的公比为q,由a1=1,$\frac{{a}_{n+1}+{a}_{n+2}}{{a}_{n}+{a}_{n+1}}$=2,可得q=2.可得an,b1=1,bn+1-bn=$\frac{1}{{a}_{n+1}}$=$(\frac{1}{2})^{n}$,利用“累加求和”方法与等比数列的求和公式即可得出.
解答 解:设等比数列{an}的公比为q,∵a1=1,$\frac{{a}_{n+1}+{a}_{n+2}}{{a}_{n}+{a}_{n+1}}$=2,
∴q=2.
∴an=2n-1.
b1=1,bn+1-bn=$\frac{1}{{a}_{n+1}}$=$(\frac{1}{2})^{n}$,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=$(\frac{1}{2})^{n-1}$+$(\frac{1}{2})^{n-2}$+…+$\frac{1}{2}$+1
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$.
则{bn}的通项公式是bn=2-$\frac{1}{{2}^{n-1}}$.
故答案为:bn=2-$\frac{1}{{2}^{n-1}}$.
点评 本题考查了递推公式、等比数列的通项公式与求和公式、“累加求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [0,1) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n(2n-1)}{2}$ | B. | 2(2n2-n) | C. | $\frac{n^2}{2}$ | D. | 2n2-n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinα | B. | -cosα | C. | cosα | D. | -sinα |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ | C. | $\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$ | D. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com