精英家教网 > 高中数学 > 题目详情
4.一名小学生的年龄和身高(单位:cm)的数据如下表:
年龄x6789
身高y118126136144
由散点图可知,身高y与年龄x之间的线性回归方程为$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,则a的值为(  )
A.65B.74C.56D.47

分析 先计算样本中心点,代入线性回归方程,可得a的值.

解答 解:由题意,$\overline{x}$=7.5,$\overline{y}$=131
代入线性回归直线方程为$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,
得131=8.8×7.5+a,可得a=65,
故选:A.

点评 本题考查回归分析的运用,考查学生的计算能力,确定线性回归直线方程是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(-x)+f(x)=0,f(x+4)=f(x)满足,且x∈(-2,0)时,f(x)=2x+$\frac{1}{5}$,则f(log220)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x+1|.
(1)求不等式f(x)≥3的解集;
(2)若关于x的不等式f(x)>a+2x-x2在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=f(x)的定义域为R,且y=f(x+2)的函数图象关于x=-2对称,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{3}{2}sin(\frac{π}{2}x)(0≤x≤1)}\\{(\frac{1}{2})^{x}+1(x>1)}\end{array}\right.$,若关于x的方程4f2(x)-(4a+5)f(x)+5a=0(a∈R),有且仅有6个不相同实数根,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|+|x-2a|.
(Ⅰ)对任意x∈R,不等式f(x)>1成立,求实数a的取值范围;
(Ⅱ)当a=-1时,解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于x的一元二次方程ax2+bx+c=0(a,b,c∈C且a≠0)有下列四个命题:①b2-4ac=0时,方程有两个等根;②b2-4ac<0时,方程有两个不等虚根;③当方程有两个不等虚根α、β时,|α|2=|β|2=αβ;④当方程有两个根α、β时,ax2+bx+c=a(x-α)(x-β),
其中正确命题的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}为等比数列,前n项和记为Sn,若Sn=kn+rm(k,r∈R,m∈Z),则下列叙述正确的是(  )
A.r=1,m为偶数B.r=1,m为奇数C.r=-1,m为偶数D.r=-1,m为奇数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设抛物线y2=4x焦点F,经过点P(4,1)的直线l与抛物线相交于A、B两点,且点P恰好为线段AB的中点,则|AF|+|BF|=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{10}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

同步练习册答案