【题目】在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:猜测冠军是乙或丁;猜测冠军一定不是丙和丁;猜测冠军是甲或乙。比赛结束后发现,三个人中只有一个人的猜测是正确的,则冠军是( )
A. 甲B. 乙C. 丙D. 丁
科目:高中数学 来源: 题型:
【题目】设函数()的图象为, 关于点的对称的图象为, 对应的函数为.
(Ⅰ)求函数的解析式,并确定其定义域;
(Ⅱ)若直线与只有一个交点,求的值,并求出交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数,例如:,.已知函数,则关于函数的叙述中正确的是( )
A.是偶函数B.是奇函数
C.在R上是增函数D.的值域是
E.的值域是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于曲线C:,给出下列五个命题:
①曲线C关于直线y=x对称;
②曲线C关于点对称;
③曲线C上的点到原点距离的最小值为;
④当时,曲线C上所有点处的切线斜率为负数;
⑤曲线C与两坐标轴所围成图形的面积是.
上述命题中,为真命题的是_____.(将所有真命题的编号填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得
参照附表,得到的正确结论是
A. 有99.5%以上的把握认为“爱好该项运动与性别有关”
B. 有99.5%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.
组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第组 |
|
| |
第组 |
|
| |
第组 |
|
| |
第组 |
|
| |
第组 |
|
|
(1)分别求出的值;
(2)从第,,组回答正确的人中用分层抽样的方法抽取人,求第,,组每组各抽取多少人?
(3)通过直方图求出年龄的众数,平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com