| A. | $\frac{15}{16}$ | B. | $\frac{31}{128}$ | C. | $\frac{35}{128}$ | D. | $\frac{31}{64}$ |
分析 在(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N+,n≥2)的展开式中,x的系数=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$,可得1-$\frac{1}{{2}^{n}}$=$\frac{15}{16}$,解得n=4.因此(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)$(1+\frac{x}{{2}^{3}})$$(1+\frac{x}{{2}^{4}})$的展开式中x2的系数=$\frac{1}{2}×(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{2}}$×$(\frac{1}{2}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{3}}$×$(\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{4}}$×$(\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}})$,即可得出.
解答 解:在(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N+,n≥2)的展开式中,x的系数=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$,
∴1-$\frac{1}{{2}^{n}}$=$\frac{15}{16}$,解得n=4.
∴(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)$(1+\frac{x}{{2}^{3}})$$(1+\frac{x}{{2}^{4}})$的展开式中x2的系数为:$\frac{1}{2}×(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{2}}$×$(\frac{1}{2}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{3}}$×$(\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{4}})$+$\frac{1}{{2}^{4}}$×$(\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}})$
=$\frac{35}{64}$.
故选:C.
点评 本题考查了二项式定理的应用、多项式的乘法运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+y2+2x=0 | B. | x2+y2-2x=0 | C. | x2+y2-4x=0 | D. | x2+y2+4x=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线 | B. | 圆 | C. | 椭圆 | D. | 双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com