精英家教网 > 高中数学 > 题目详情
14.设双曲线方程$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{3}$=1的焦点分别为F1,F2,离心率为2,设A、B分别为双曲线渐近线l1,l2上的动点,且2|AB|=5|F1F2|,则线段AB的中点M的轨迹方程为(  )
A.直线B.C.椭圆D.双曲线

分析 设A(x1,y1),B(x2,y2),AB的中点M(x,y),利用2|AB|=5|F1F2|,以及中点坐标公式,建立方程,根据A、B分别为l1、l2上的点,化简可得轨迹方程及对应的曲线.

解答 解:∵e=2,∴c2=4a2
∵c2=a2+3,∴a=1,c=2,
∴双曲线方程为y2-$\frac{{x}^{2}}{3}$=1,
渐近线方程为y=±$\frac{\sqrt{3}}{3}$x,
设A(x1,y1),B(x2,y2),AB的中点M(x,y),
∵2|AB|=5|F1F2|,
∴|AB|=$\frac{5}{2}$|F1F2|=$\frac{5}{2}$×2c=10,$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=10,
∵y1=$\frac{\sqrt{3}}{3}$x1,y2=-$\frac{\sqrt{3}}{3}$x2
2x=x1+x2,2y=y1+y2
∴y1+y2=$\frac{\sqrt{3}}{3}$(x1-x2),y1-y2=$\frac{\sqrt{3}}{3}$(x1+x2),
即有x1-x2=$\sqrt{3}$(y1+y2),
可得3(2y)2+$\frac{1}{3}$(2x)2=100,
化简可得$\frac{{x}^{2}}{75}$+$\frac{3{y}^{2}}{25}$=1,对应的曲线为椭圆.
故选:C.

点评 本题考查轨迹方程的求解及轨迹的判断,考查双曲线的几何性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx-ωπ)(ω>0)的最小正周期为π,则f($\frac{π}{12}$)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N+,n≥2)的展开式中,x的系数为$\frac{15}{16}$,则x2的系数为(  )
A.$\frac{15}{16}$B.$\frac{31}{128}$C.$\frac{35}{128}$D.$\frac{31}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a、b、c∈(0,+∞),且acos2θ+bsin2θ<c,求证:$\sqrt{a}$cos2θ+$\sqrt{b}$sin2θ<$\sqrt{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U={x∈N*|x≤5},A={1,4},B={4,5},则∁U(A∩B)=(  )
A.{1,2,3,5}B.{1,2,4,5}C.{1,3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,平面ABCD⊥平面ABEF,其中四边形ABCD为矩形,四边形ABEF为等腰梯形,AB∥EF,点O为AB的中点,M为CD的中点,AB=2,AF=EF=1
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)若直线AM与平面CBF所成角的正弦值为$\frac{\sqrt{5}}{10}$,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinn(π+α)=-$\frac{3}{5}$,α为锐角,求cos(2π-α),tan(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等比数列{an}中,公比q≠1,它的前n项和为M,数列{$\frac{2}{{a}_{n}}$}的前n项和为N,则$\frac{M}{N}$的值为$\frac{{{{a}_{1}}^{2}q}^{n-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求(x2-x+1)(1+x)8展开式中x4项的系数;
(2)求(1-x)5(1-2x)6展开式中x3项的系数.

查看答案和解析>>

同步练习册答案