分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求$\frac{y-2}{x+2}$的最大值.
解答
解:作出不等式组$\left\{{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}}\right.$对应的平面区域:
$\frac{y-2}{x+2}$的几何意义为区域内的点到P(-2,2)的斜率,
由图象知,PA的斜率最大,
由$\left\{\begin{array}{l}{x=2}\\{x-2y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
故PA的斜率k=$\frac{3-2}{2+2}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 外心 | B. | 内心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{16}$ | B. | $\frac{31}{128}$ | C. | $\frac{35}{128}$ | D. | $\frac{31}{64}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com