精英家教网 > 高中数学 > 题目详情
15.某企业拟对员工进行一次伤寒疫情防治,共有甲、乙、丙三套方案.在员工中随机抽取6人,并对这6人依次检查.如果这6人都没有感染伤寒,就不采取措施;如果6人中只有1人或2人感染伤寒,就用甲方案;如果这6人中只有3人感染伤寒,就用乙方案,其余用丙方案.
(Ⅰ)若这6人中只有2人感染伤寒,求检查时恰好前2人感染伤寒的概率;
(Ⅱ)若每个员工感染伤寒的概率为$\frac{1}{2}$,求采用乙方案的概率;
(Ⅲ)这次伤寒疫情防治的费用为ξ元.当员工无人感染伤寒时,ξ为0,采用甲、乙、丙三套方案的ξ分别为512、512和1024.求ξ的分布列和数学期望Eξ.

分析 (Ⅰ)由这6人中只有2人感染伤寒,利用相互独立事件概率乘法公式能求出检查时恰好前2人感染伤寒的概率.
(Ⅱ)由这6人中只有3人感染伤寒,就用乙方案,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出采用乙方案的概率.
(Ⅲ)由已知得ξ的可能取值为0,512,1024,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(Ⅰ)∵这6人中只有2人感染伤寒,
∴检查时恰好前2人感染伤寒的概率:P1=$\frac{2}{6}×\frac{1}{5}$=$\frac{1}{15}$.
(Ⅱ)∵这6人中只有3人感染伤寒,就用乙方案,
∴采用乙方案的概率P2=${C}_{6}^{3}(\frac{1}{2})^{3}(1-\frac{1}{2})^{3}$=$\frac{5}{16}$,
(Ⅲ)由已知得ξ的可能取值为0,512,1024,
P(ξ=0)=${C}_{6}^{0}(\frac{1}{2})^{6}$=$\frac{1}{64}$,
P(ξ=512)=${C}_{6}^{1}(\frac{1}{2})(\frac{1}{2})^{5}$+${C}_{6}^{2}(\frac{1}{2})^{2}(\frac{1}{2})^{4}+{C}_{6}^{3}(\frac{1}{2}{)^{3}(\frac{1}{2})^{3}}_{\;}$=$\frac{41}{64}$,
P(ξ=1024)=${C}_{6}^{4}(\frac{1}{2})^{4}(\frac{1}{2})^{2}$+${C}_{6}^{5}(\frac{1}{2})^{5}(\frac{1}{2})$+${C}_{6}^{6}(\frac{1}{2})^{6}$=$\frac{22}{64}$,
∴ξ的分布列为:

 ξ 0 512 1024
 P $\frac{1}{64}$ $\frac{41}{64}$ $\frac{22}{64}$
Eξ=$0×\frac{1}{64}+512×\frac{41}{64}+1024×\frac{22}{64}$=680.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知抛物线关于x轴对称,它的顶点在坐标原点O,若点M(-2,y)在抛物线上,且点M到该抛物线焦点的距离为3,
(1)求抛物线的标准方程及点M的坐标.
(2)过点C(-3,$\frac{1}{2}$)做直线l,使得直线l与抛物线相交于A,B两点.恰好C为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a$=(m,0}),向量$\overrightarrow b,\overrightarrow c$满足$\overrightarrow a$⊥$\overrightarrow{b$,$\overrightarrow c$-$\overrightarrow a$=2$\overrightarrow b$,且|$\overrightarrow c$|=$\sqrt{10}$,若$\overrightarrow c$与$\overrightarrow a$+$\overrightarrow b$夹角的余弦值为$\frac{{3\sqrt{10}}}{10}$,则|$\overrightarrow b$|=(  )
A.$\sqrt{2}$B.$\frac{5}{4}$C.$\frac{5}{4}$或2D.$\sqrt{2}$或$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2+b,g(x)=ax+aln(x-1),若存在实数a(a≥1),使y=f(x),y=g(x)的图象无公共点,则实数b的取值范围是(  )
A.[-1,0]B.(-$\frac{3}{4}$-ln2,1]C.(-$\frac{3}{4}$-ln2,+∞)D.(-∞,-$\frac{3}{4}$-ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,已知an=11-2n,则使前n项和Sn最大的n值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x3-3x2+2的极大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|0<log4x<1},B={x|x2-4≤0},则A∩B=(  )
A.(0,1)B.(0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱锥S-ABCD的底面四边形ABCD为平行四边形,其中AC⊥BD,且AC、BD相交于O,∠SBC=∠SBA.
(Ⅰ)求证:AC⊥平面SBD;
(Ⅱ)若AC=AB=SB=2,∠SBD=60°,点M是SB中点,求三棱锥A-BMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={1,2},B={0,1},则集合A∪B的所有子集的个数为8个.

查看答案和解析>>

同步练习册答案