精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2+b,g(x)=ax+aln(x-1),若存在实数a(a≥1),使y=f(x),y=g(x)的图象无公共点,则实数b的取值范围是(  )
A.[-1,0]B.(-$\frac{3}{4}$-ln2,1]C.(-$\frac{3}{4}$-ln2,+∞)D.(-∞,-$\frac{3}{4}$-ln2]

分析 若y=f(x)的图象与y=g(x)的图象无公共点,则等价为f(x)-g(x)>0或f(x)-g(x)<0恒成立,利用参数分离法,转化为求函数的最值,构造函数,求函数的导数,利用导数进行求解即可.

解答 解:若y=f(x)的图象与y=g(x)的图象无公共点,
则等价为f(x)-g(x)>0或f(x)-g(x)<0恒成立,
即x2-ax-aln(x-1)+b>0或,x2-ax-aln(x-1)+b<0恒成立,
即x2-ax-aln(x-1)>-b或x2-ax-aln(x-1)<-b恒成立,
设h(x)=x2-ax-aln(x-1),则函数h(x)的定义域为(1,+∞),
函数的导数h′(x)=2x-a-$\frac{a}{x-1}$=$\frac{2x(x-\frac{a+2}{2})}{x-1}$,
当a≥1时,$\frac{a+2}{2}$≥$\frac{3}{2}$,
故x∈(1,$\frac{a+2}{2}$)时,h′(x)<0,
x∈( $\frac{a+2}{2}$,+∞)时,h′(x)>0,
即当x=$\frac{a+2}{2}$时,函数h(x)取得极小值同时也是最小值h( $\frac{a+2}{2}$)=-$\frac{{a}^{2}}{4}$+1-aln$\frac{a}{2}$,
设G(a)=h($\frac{a+2}{2}$)=-$\frac{{a}^{2}}{4}$+1-aln$\frac{a}{2}$,
则G(a)在[1,+∞)上为减函数,
∴G(a)的最大值为G(1)=$\frac{3}{4}$+ln2,
故h(x)的最小值h($\frac{a+2}{2}$)≤$\frac{3}{4}$+ln2,
则若x2-ax-aln(x-1)>-b,
则b>-$\frac{3}{4}$-ln2,
若x2-ax-aln(x-1)<-b恒成立,则不成立,
综上b>-$\frac{3}{4}$-ln2,
故选:C.

点评 本题主要考查函数的相交问题,构造函数,利用参数分类法,结合导数研究函数的最值是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|x2-5x+6<0},B={x|x2-ax+5=0},若A∩B≠∅,则实数a的取值范围为[2$\sqrt{5}$,$\frac{14}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某学校对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次,若某志愿者考核我合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为$\frac{4}{5},\frac{2}{3},\frac{2}{3}$,他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在映射f:$\overrightarrow{x}$→|$\overrightarrow{x}$|下,2的一个原像可以是(  )
A.向量(1,1)B.向量$({1,\sqrt{3}})$C.向量$({\frac{1}{2},\frac{3}{2}})$D.向量$({2,\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,△ABC与△PAB均为等边三角形,AC=$\sqrt{2}$AD=$\sqrt{2}$CD,PC=$\frac{3}{2}$AB.
(1)若三棱锥P-ABC的体积为$\frac{\sqrt{3}}{2}$,求四边形ABCD的面积.
(2)N为DP上一点,且$\overrightarrow{NP}$=$\sqrt{3}$$\overrightarrow{DN}$,在线段AB上是否存在一点M,使MN∥平面PBC,若存在.求出$\frac{AM}{AB}$,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某企业拟对员工进行一次伤寒疫情防治,共有甲、乙、丙三套方案.在员工中随机抽取6人,并对这6人依次检查.如果这6人都没有感染伤寒,就不采取措施;如果6人中只有1人或2人感染伤寒,就用甲方案;如果这6人中只有3人感染伤寒,就用乙方案,其余用丙方案.
(Ⅰ)若这6人中只有2人感染伤寒,求检查时恰好前2人感染伤寒的概率;
(Ⅱ)若每个员工感染伤寒的概率为$\frac{1}{2}$,求采用乙方案的概率;
(Ⅲ)这次伤寒疫情防治的费用为ξ元.当员工无人感染伤寒时,ξ为0,采用甲、乙、丙三套方案的ξ分别为512、512和1024.求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(a-1)x+xlnx在点(1,f(1))处的切线斜率为1.
(Ⅰ)求g(x)=$\frac{f(x)}{x-1}$的单调区间;
(Ⅱ)若m>n>1,求证:$\frac{{\root{m}{n}}}{{\root{n}{m}}}$>$\frac{n}{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高三文科600名学生参加了12月的模拟考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从中抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599
(Ⅰ)若从第6行第7列的数开始右读,请你依次写出最先抽出的5人的编号(下面是摘自随机数表的第4行至第7行);

(Ⅱ)抽出的100名学生的数学、外语成绩如表:
外语
及格
数学8m9
9n11
及格8911
若数学成绩优秀率为35%,求m,n的值;
(Ⅲ)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

同步练习册答案