精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|x2-5x+6<0},B={x|x2-ax+5=0},若A∩B≠∅,则实数a的取值范围为[2$\sqrt{5}$,$\frac{14}{3}$).

分析 化简A={x|x2-5x+6<0}=(2,3),从而转化为x2-ax+5=0在区间(2,3)上有解,即a=$\frac{{x}^{2}+5}{x}$=x+$\frac{5}{x}$在区间(2,3)上有解,从而由函数性质求解.

解答 解:∵A={x|x2-5x+6<0}=(2,3),
又∵A∩B≠∅,
∴x2-ax+5=0在区间(2,3)上有解,
即a=$\frac{{x}^{2}+5}{x}$=x+$\frac{5}{x}$在区间(2,3)上有解,
∵当x∈(2,3)时,x+$\frac{5}{x}$∈[2$\sqrt{5}$,$\frac{14}{3}$);
故答案为:[2$\sqrt{5}$,$\frac{14}{3}$).

点评 本题考查了集合的化简与运算,同时考查了函数思想与分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下面各组函数中为相等函数的是(  )
A.f(x)=$\sqrt{{{(x-1)}^2}}$,g(x)=x-1B.f(x)=x-1,g(t)=t-1
C.f(x)=$\sqrt{{x^2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$D.f(x)=x,g(x)=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如果数列{an}、{bn}是项数相同的两个等差数列,p,q是常数,那么数列{pan+qbn}是等差数列吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的首项a1=1,且a2、a4、a3成等差,则数列{an}的公比q=1或-$\frac{1}{2}$,数列{an}的前4项和S4=4或$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果两条直线l1,l2中的一条斜率不存在,另一个斜率是零,那么l1与l2的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a=2“是“点P(2,0)不在圆x2-2ax+a2+y2-4y=0外”的什么条件(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线关于x轴对称,它的顶点在坐标原点O,若点M(-2,y)在抛物线上,且点M到该抛物线焦点的距离为3,
(1)求抛物线的标准方程及点M的坐标.
(2)过点C(-3,$\frac{1}{2}$)做直线l,使得直线l与抛物线相交于A,B两点.恰好C为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设随机变量ξ的概率密度为p(x)=$\left\{\begin{array}{l}{\frac{1}{10}{e}^{-\frac{x}{10}},x>0}\\{0,x≤0}\end{array}\right.$则E(2ξ+1)=(  )
A.$\frac{7}{5}$B.41C.21D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2+b,g(x)=ax+aln(x-1),若存在实数a(a≥1),使y=f(x),y=g(x)的图象无公共点,则实数b的取值范围是(  )
A.[-1,0]B.(-$\frac{3}{4}$-ln2,1]C.(-$\frac{3}{4}$-ln2,+∞)D.(-∞,-$\frac{3}{4}$-ln2]

查看答案和解析>>

同步练习册答案