分析 (1)在△ADC中,设AD=a,由AC=$\sqrt{2}$AD=$\sqrt{2}$CD,可得△ADC是∠ADC为直角的直角三角形,再由△ABC与△PAB均为等边三角形,得到AB=BC=PA=PB=$\sqrt{2}a$,取AB中点O,在△POC中,利用余弦定理求得∠POC=120°,然后求解直角三角形求得棱锥的高,结合三棱锥P-ABC的体积为$\frac{\sqrt{3}}{2}$求得a值,则四边形ABCD的面积可求;
(2)分别以OB,OC所在直线为x,y轴建立空间直角坐标系,得到B,C,P,A,D的坐标,求出平面PBC的一个法向量$\overrightarrow{m}=(3,-\sqrt{3},0)$,由$\overrightarrow{NP}$=$\sqrt{3}$$\overrightarrow{DN}$,得N的坐标,假设在线段AB上存在一点M,使MN∥平面PBC,设$\frac{AM}{AB}$=λ(0≤λ≤1),把M的坐标用含有λ的代数式表示,由$\overrightarrow{MN}•\overrightarrow{m}=0$,求得$λ=\frac{3-2\sqrt{3}}{8}<0$,说明假设错误.故在线段AB上不存在点M,使MN∥平面PBC.
解答 解:(1)在△ADC中,设AD=a,
由AC=$\sqrt{2}$AD=$\sqrt{2}$CD,得CD=a,AC=$\sqrt{2}a$,![]()
∴△ADC是∠ADC为直角的直角三角形,
∵△ABC与△PAB均为等边三角形,
则AB=BC=PA=PB=$\sqrt{2}a$,
取AB中点O,连接PO,CO,则$PO=CO=\frac{\sqrt{6}}{2}a$,
在△POC中,$cos∠POC=\frac{(\frac{\sqrt{6}}{2}a)^{2}+(\frac{\sqrt{6}}{2}a)^{2}-(\frac{3\sqrt{2}}{2}a)^{2}}{2•\frac{\sqrt{6}}{2}a•\frac{\sqrt{6}}{2}a}$=$-\frac{1}{2}$.
∴∠POC=120°,
过P作PG⊥CO的延长线于G,则∠POG=60°,
可得PG=PO•sin60°=$\frac{3\sqrt{2}}{4}a$.
由PO⊥AB,CO⊥AB,可知平面POC⊥平面ABCD,
又平面POC∩平面ABCD=CO,且PG⊥CO,
∴PG⊥平面ABCD,
${S}_{△ABC}=\frac{1}{2}•\sqrt{2}a•\frac{\sqrt{6}}{2}a=\frac{\sqrt{3}}{2}{a}^{2}$,
∴${V}_{P-ABC}=\frac{1}{3}•\frac{\sqrt{3}}{2}{a}^{2}•\frac{3\sqrt{2}}{4}a=\frac{\sqrt{3}}{2}$,即a=$\sqrt{2}$.
∴${S}_{ABCD}=\frac{\sqrt{3}}{2}×(\sqrt{2})^{2}+\frac{1}{2}×(\sqrt{2})^{2}=\sqrt{3}+1$;
(2)分别以OB,OC所在直线为x,y轴建立空间直角坐标系,
则B($\frac{\sqrt{2}a}{2},0,0$),C(0,$\frac{\sqrt{6}a}{2}$,0),P(0,$-\frac{\sqrt{6}a}{4}$,0),A(-$\frac{\sqrt{2}a}{2},0,0$),D($-\frac{\sqrt{6}+\sqrt{2}}{4}a,\frac{\sqrt{6}+\sqrt{2}}{4}a,0$),
$\overrightarrow{PB}=(\frac{\sqrt{2}}{2}a,\frac{\sqrt{6}a}{2},0)$,$\overrightarrow{PC}=(0,\frac{3\sqrt{6}a}{4},0)$,
设平面PBC的一个法向量为$\overrightarrow{m}=(x,y,z)$,
则由$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}ax+\frac{\sqrt{6}}{2}ay=0}\\{\frac{3\sqrt{6}}{4}ay=0}\end{array}\right.$,解得$\overrightarrow{m}=(3,-\sqrt{3},0)$,
设N(x1,y1,z1),由$\overrightarrow{NP}$=$\sqrt{3}$$\overrightarrow{DN}$,得$(-{x}_{1},-\frac{\sqrt{6}a}{4}-{y}_{1},-{z}_{1})=\sqrt{3}$$({x}_{1}+\frac{\sqrt{6}+\sqrt{2}}{4}a,{y}_{1}-\frac{\sqrt{6}+\sqrt{2}}{4}a,{z}_{1})$,
解得:N($-\frac{\sqrt{6}}{4}a,\frac{\sqrt{2}}{8}a,0$),
假设在线段AB上存在一点M,使MN∥平面PBC,设$\frac{AM}{AB}$=λ(0≤λ≤1),
则$\overrightarrow{AM}=λ\overrightarrow{AB}$,设M(x2,y2,z2),
则$({x}_{2}+\frac{\sqrt{2}a}{2},{y}_{2},{z}_{2})=(\sqrt{2}aλ,0,0)$,
∴M($\sqrt{2}aλ-\frac{\sqrt{2}a}{2}$,0,0),
则$\overrightarrow{MN}=(-\frac{\sqrt{6}}{4}a-\sqrt{2}aλ+\frac{\sqrt{2}}{2}a,\frac{\sqrt{2}}{8}a,0)$,
由$\overrightarrow{MN}•\overrightarrow{m}=0$,得$-\frac{3\sqrt{6}}{4}a-3\sqrt{2}aλ+\frac{3\sqrt{2}}{2}a-\frac{3\sqrt{2}}{8}a=0$,解得:$λ=\frac{3-2\sqrt{3}}{8}<0$.
∴假设错误.
故在线段AB上不存在点M,使MN∥平面PBC.
点评 本题考查了棱锥体积的求法,考查了空间想象能力和思维能力,考查计算能力,训练了利用空间向量判定线面平行问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-$\frac{3}{4}$-ln2,1] | C. | (-$\frac{3}{4}$-ln2,+∞) | D. | (-∞,-$\frac{3}{4}$-ln2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com