精英家教网 > 高中数学 > 题目详情
16.数列{an}的前n项和Sn满足:2Sn=3an-6n(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设$b{\;}_n=\frac{a_n}{λ^n}$,其中常数λ>0,若数列{bn}为递增数列,求λ的取值范围.

分析 (I)由2Sn=3an-6n(n∈N*),利用递推关系化为:an+3=3(an-1+3),利用等比数列的通项公式即可得出.
(II)$b{\;}_n=\frac{a_n}{λ^n}$=$\frac{{3}^{n+1}-3}{{λ}^{n}}$,其中常数λ>0,利用数列{bn}为递增数列,可得bn+1>bn,化简即可得出.

解答 解:(I)∵2Sn=3an-6n(n∈N*),∴n=1时,2a1=3a1-6,解得a1=6.
当n≥2时,2an=2(Sn-Sn-1)=3an-6n-[3an-1-6(n-1)],化为:an+3=3(an-1+3).
∴数列{an+3}是等比数列,首项为9,公比为3.
∴an+3=9×3n-1
∴an=3n+1-3.
(II)$b{\;}_n=\frac{a_n}{λ^n}$=$\frac{{3}^{n+1}-3}{{λ}^{n}}$,其中常数λ>0,
∵数列{bn}为递增数列,
∴bn+1>bn
∴$\frac{{3}^{n+2}-3}{{λ}^{n+1}}$>$\frac{{3}^{n+1}-3}{{λ}^{n}}$,
化为:λ<$\frac{{3}^{n+1}-1}{{3}^{n}-1}$=3+$\frac{2}{{3}^{n}-1}$.
∵数列$\{\frac{2}{{3}^{n}-1}\}$单调递减,
∴0<λ≤3.
∴λ的取值范围是(0,3].

点评 本题考查了数列的递推关系、等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知角α的终边在直线y=-$\frac{4}{3}$x上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来空气污染是生活中一个重要的话题,PM2.5就是空气质量的其中一个重要指标,各省、市、县均要进行实时监测.空气质量指数要求PM2.5 24小时浓度均值分:优、良、轻度污染、中度污染、重度污染、严重污染六级.如图是某市2015年某月30天的PM2.5 24小时浓度均值数据.

(Ⅰ)根据数据绘制频率分布表,并求PM2.5 24小时浓度均值的中位数;
空气质量
指数类别

[0,35]

(35,75]
轻度污染
(75,115]
中度污染
(115,150]
重度污染
(150,250]
严重污染
(250,500]
合计
频数      30
频率      1
(Ⅱ)专家建议,空气质量为优、良时可以正常进行某项户外体育活动,轻度污染及以上时,不宜进行该项户外体育活动.若以频率作为概率,用统计的结果分析,在2015年随机抽取6天,正常进行该项户外体育活动的天数与不宜进行该项户外体育活动的天数的差的绝对值为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2$\sqrt{2}$,且斜率为$\sqrt{3}$的直线l过椭圆C的焦点及点(0,-2$\sqrt{3}$).
(1)求椭圆C的方程;
(2)已知一直线m过椭圆C的左焦点F,交椭圆于点P、Q,若直线m与两坐标轴都不垂直,点M在x轴上,且使MF为∠PMQ的一条角平分线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,现从该袋中随机地取出3只,被取出的球
中最大的号码为ξ,则Eξ=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,△ABC与△PAB均为等边三角形,AC=$\sqrt{2}$AD=$\sqrt{2}$CD,PC=$\frac{3}{2}$AB.
(1)若三棱锥P-ABC的体积为$\frac{\sqrt{3}}{2}$,求四边形ABCD的面积.
(2)N为DP上一点,且$\overrightarrow{NP}$=$\sqrt{3}$$\overrightarrow{DN}$,在线段AB上是否存在一点M,使MN∥平面PBC,若存在.求出$\frac{AM}{AB}$,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{{x•{{log}_3}|x|}}{|x|}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.中位数为2016的一组数构成等差数列,其末项为(1+x)4028的展开式倒数第二项的系数,则该数列的首项为4.

查看答案和解析>>

同步练习册答案