精英家教网 > 高中数学 > 题目详情
5.函数y=$\frac{{x•{{log}_3}|x|}}{|x|}$的图象可能是(  )
A.B.C.D.

分析 根据函数的表达式得出函数的奇偶性,根据奇函数图象关于原点对称,再利用特殊值法排除D选项即可.

解答 解:定义域为(-∞,0)∪(0,+∞),
且函数为奇函数,
∴图象关于原点对称,排除A,C,
当x为无穷大时,显然函数值为正,故排除D,
故选:B.

点评 本题考查了函数图象的判断在选择题中的解题方法.注意排除法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若定义在区间[-2016,2016]上的函数f(x)满足:对于任意的x1,x2∈[-2016,2016],都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时,有f(x)<2016,f(x)的最大值、最小值分别为M,N,则M+N的值为(  )
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和Sn满足:2Sn=3an-6n(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设$b{\;}_n=\frac{a_n}{λ^n}$,其中常数λ>0,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知成等比数列的三个数的乘积为64,且这三个数分别减去1、2、5后又成等差数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x3-3x2+2的极大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=2|x+a|-|x+b|
(Ⅰ)当a=0,b=-$\frac{1}{2}$时,求使f(x)≥$\sqrt{2}$的x取值范围;
(Ⅱ)若f(x)≥$\frac{1}{16}$恒成立,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=a(0<a≤1),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,({a}_{n}>1})\\{-{a}_{n}+\frac{3}{2},({a}_{n}≤1})\end{array}\right.$(n∈N*
①若a3=$\frac{1}{6}$,则a=$\frac{1}{3}$;
②记Sn=a1+a2+…+an,则S2016=1512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC∥EA,设EA=1,FC=2.
(1)证明:EF⊥BD;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2+i}{i}$的虚部是(  )
A.2B.2iC.-2D.-2i

查看答案和解析>>

同步练习册答案