精英家教网 > 高中数学 > 题目详情
6.中位数为2016的一组数构成等差数列,其末项为(1+x)4028的展开式倒数第二项的系数,则该数列的首项为4.

分析 (1+x)4028的展开式倒数第二项的系数为${∁}_{4028}^{4027}$=4028,由中位数的定义可得:$\frac{{a}_{1}+4028}{2}$=2016,解得a1即可得出.

解答 解:(1+x)4028的展开式倒数第二项的系数为${∁}_{4028}^{4027}$=4028,
∴$\frac{{a}_{1}+4028}{2}$=2016,解得a1=4.
故答案为:4.

点评 本题考查了等差数列的性质、中位数的定义、二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和Sn满足:2Sn=3an-6n(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设$b{\;}_n=\frac{a_n}{λ^n}$,其中常数λ>0,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=a(0<a≤1),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,({a}_{n}>1})\\{-{a}_{n}+\frac{3}{2},({a}_{n}≤1})\end{array}\right.$(n∈N*
①若a3=$\frac{1}{6}$,则a=$\frac{1}{3}$;
②记Sn=a1+a2+…+an,则S2016=1512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC∥EA,设EA=1,FC=2.
(1)证明:EF⊥BD;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an},a1=1,a2=3,an+2=an+1-an,则a2016=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.${(x+\frac{1}{x}-2)^5}$展开式中常数项为(  )
A.160B.-160C.252D.-252

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于下列命题:
①函数y=tanx的一个对称中心是($\frac{π}{2}$,0);
②函数y=cos2($\frac{π}{4}$-x)是偶函数;
③函数y=4sin(2x-$\frac{π}{3}$)的一条对称轴是x=-$\frac{π}{12}$;
④函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数.
写出所有正确的命题的题号①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2+i}{i}$的虚部是(  )
A.2B.2iC.-2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知tanα=2,求cos2α+sinαcosα值;
(2)已知cos($\frac{π}{3}$+α)=$\frac{1}{3}$(α为锐角).求sinα值.

查看答案和解析>>

同步练习册答案