精英家教网 > 高中数学 > 题目详情
16.(1)已知tanα=2,求cos2α+sinαcosα值;
(2)已知cos($\frac{π}{3}$+α)=$\frac{1}{3}$(α为锐角).求sinα值.

分析 (1)直接利用同角三角函数基本关系式化简求解即可.
(2)利用两角和与差的三角函数化简求解即可.

解答 解:(1)tanα=2,
cos2α+sinαcosα=$\frac{co{s}^{2}α+sinαcosα}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1+tanα}{1+ta{n}^{2}α}$=$\frac{3}{5}$.
(2)cos($\frac{π}{3}$+α)=$\frac{1}{3}$(α为锐角).可得sin($\frac{π}{3}$+α)=$\sqrt{1-co{s}^{2}(\frac{π}{3}+α)}$=$\frac{2\sqrt{2}}{3}$.
sinα=sin[($\frac{π}{3}$+α)-$\frac{π}{3}$]=sin($\frac{π}{3}$+α)cos$\frac{π}{3}$+cos($\frac{π}{3}$+α)sin$\frac{π}{3}$=$\frac{2\sqrt{2}}{3}×\frac{1}{2}+\frac{1}{3}×\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{2}+\sqrt{3}}{6}$.

点评 本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.中位数为2016的一组数构成等差数列,其末项为(1+x)4028的展开式倒数第二项的系数,则该数列的首项为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数是(  )
(1)命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为:“若方程x2+x-m=0无实根,则m≤0”
(2)对于命题p:“?x∈R,使得x2+x+1<0”,则?p:“?x∈R,均有x2+x+1≥0”
(3)“x≠1”是“x2-3x+2≠0”的充分不必要条件
(4)若p∧q为假命题,则p,q均为假命题.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{OA}$=(k,2),$\overrightarrow{OB}$=(1,2k),$\overrightarrow{OC}$=(1-k,-1)且相异的三点A、B、C共线,则实数k=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆x2+y2-4x=0的圆心坐标和半径分别为(  )
A.(2,0),4B.(2,0),2C.(-2,0),4D.(-2,0),2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),且$\overrightarrow{a}$,$\overrightarrow{b}$满足关系|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k为正数).
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的数量积用k表示的解析式f(k).
(2)$\overrightarrow{a}$能否与$\overrightarrow{b}$垂直?$\overrightarrow{a}$能否与$\overrightarrow{b}$平行?若不能,说明理由;若能,求出相应的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,四棱锥P-ABCD的底面是边长为a的菱形,∠DAB=60°,侧面PAD⊥底面ABCD,PA=PD.
(1)证明:AD⊥PB;
(2)若PB=$\frac{\sqrt{5}}{2}$a,求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=x+asinx.
(1)若a=1.求f(x)在区间[0,1]上的最大值;
(2)若f(x)在(-∞,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈Z)的图象关于y轴对称,且在(-∞,0)为增函数.
(1)求f(x)的解析式;
(2)判断g(x)=a$\sqrt{f(x)}$-$\frac{b}{xf(x)}$的奇偶性;解不等式f(2x-1)<f(1+x).

查看答案和解析>>

同步练习册答案