精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{OA}$=(k,2),$\overrightarrow{OB}$=(1,2k),$\overrightarrow{OC}$=(1-k,-1)且相异的三点A、B、C共线,则实数k=-$\frac{1}{4}$.

分析 利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.

解答 解:∵$\overrightarrow{OA}$=(k,2),$\overrightarrow{OB}$=(1,2k),$\overrightarrow{OC}$=(1-k,-1)且相异的三点A、B、C共线,
∴$\overrightarrow{AB}$=(1-k,2k-2),$\overrightarrow{BC}$=(-k,-1-2k),
∴(1-k)(-1-2k)-(2k-2)(-k)=0,
解得k=1或k=-$\frac{1}{4}$,当k=1时,A,B重合,故舍去,
故答案为:-$\frac{1}{4}$.

点评 本题考查向量平行的坐标形式的充要条件、向量平行解决三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC∥EA,设EA=1,FC=2.
(1)证明:EF⊥BD;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2+i}{i}$的虚部是(  )
A.2B.2iC.-2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一扇形的周长等于4cm,面积等于1cm2,则该扇形的半径为1,圆心角为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知y=f(x)为(0,+∞)上的可导函数,且(x+1)f′(x)>f(x),则以下一定成立的是(  )
A.3f(4)<4f(3)B.3f(4)>4f(3)C.3f(3)<4f(2)D.3f(3)>4f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=alnx-$\frac{1}{2}$x2,h(x)=$\frac{1}{2}$x2
(1)求函数g(x)的单调区间;
(2)对于函数f(x)与h(x)定义域内的任意实数x,若存在直线y=kx+b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线,求证:直线y=x-$\frac{1}{2}$为函数f(x)与h(x)的分界线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知tanα=2,求cos2α+sinαcosα值;
(2)已知cos($\frac{π}{3}$+α)=$\frac{1}{3}$(α为锐角).求sinα值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\sqrt{4+{x}^{2}}$,则?x1,x2∈R,x1≠x2,$\frac{|f({x}_{1})-f({x}_{2})|}{|{x}_{1}-{x}_{2}|}$的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+x•|x-a|,x∈[1,5]
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)当a≥3时,求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案