精英家教网 > 高中数学 > 题目详情
6.曲线y=x2+2x在点(1,3)处的切线方程是(  )
A.4x-y-1=0B.3x-4y+1=0C.3x-4y+1=0D.4y-3x+1=0

分析 先求曲线y=x2+2x的导数,因为函数在切点处的导数就是切线的斜率,求出斜率,再用点斜式写出切线方程,再化简即可.

解答 解:y=x2+2x的导数为y′=2x+2,
∴曲线y=x2+2x在点( 1,3)处的切线斜率为4,
切线方程是y-3=4(x-1),
化简得,4x-y-1=0.
故选A.

点评 本题主要考查了函数的导数与切线斜率的关系,属于导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-$\frac{1}{3}{x^3}$+36x+126,则使该生产厂家获取最大年利润的年产量为(  )
A.11万件B.9万件C.6 万件D.7万件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-2x2-4x,x∈R,函数g(x)=x2-4x,(x∈R)
(1)求f(x)的单调区间;
(2)求函数f(x)与函数g(x)的曲线所围成封闭图形的面积?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设xi,ai(i=1,2,3)均为正实数,甲、乙两位同学由命题:“若x1+x2=1,则$\frac{{a}_{1}}{{x}_{1}}$+$\frac{{a}_{2}}{{x}_{2}}$≤($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$)2”分别推理得出了新命题:
甲:“若x1+x2=1,则$\frac{{a}_{1}^{2}}{{x}_{1}}$+$\frac{{a}_{2}^{2}}{{x}_{2}}$≤(a1+a22”;
乙:“若x1+x2+x3=1,则$\frac{{a}_{1}}{{x}_{1}}$+$\frac{{a}_{2}}{{x}_{2}}$+$\frac{{a}_{3}}{{x}_{3}}$≤($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$)2”.
他们所用的推理方法是(  )
A.甲、乙都用演绎推理B.甲、乙都用类比推理
C.甲用演绎推理,乙用类比推理D.甲用归纳推理,乙用类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下面四个命题中,
①复数z=a+bi,则实部、虚部分别是a,b;
②复数z满足|z+1|=|z-2i|,则z对应的点集合构成一条直线;
③由向量$\overrightarrow a$的性质${|{\overrightarrow a}|^2}={\overrightarrow a^2}$,可类比得到复数z的性质|z|2=z2
④i为虚数单位,则1+i+i2+…+i2015=i.
正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A是圆x2+y2=4上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足DM=$\frac{\sqrt{3}}{2}$DA.当点A在圆上运动时,记点M的轨迹为曲线V.
(1)求曲线C的标准方程;
(2)设曲线C的左右焦点分别为F1、F2,经过F2的直线m与曲线C交于P、Q两点,若|PQ|2=|F1P|2+|F2P|2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k,(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为(  )
A.RB.[-4,0]C.[9,33]D.[-33,-9]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直径AB为2的圆上有长度为1的动弦CD,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值范围是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrowa}$|=2,|$\overrightarrow b}$|=3,且|2$\overrightarrow a}$-$\overrightarrow b}$|=$\sqrt{13}$,则|2$\overrightarrow a}$+$\overrightarrow b}$|=$\sqrt{37}$向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为1.

查看答案和解析>>

同步练习册答案