精英家教网 > 高中数学 > 题目详情
5.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是$\frac{28π}{3}$,则三视图中圆的半径为(  )
A.2B.3C.4D.6

分析 由三视图可知:该几何体为球去掉$\frac{1}{8}$,余下的几何体.

解答 解:由三视图可知:该几何体为球去掉$\frac{1}{8}$,余下的几何体.
设三视图中圆的半径为r,则$\frac{7}{8}×\frac{4π}{3}{r}^{3}$=$\frac{28π}{3}$,解得r=2.
故选:A.

点评 本题考查了球的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为0.388(结果用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的取值范围为(  )
A.[2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$]B.[2,$\frac{8}{3}$]C.[0,$\frac{2\sqrt{13}}{3}$]D.[2,$\frac{2\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程sin2πx-$\frac{2}{2x-1}$=0(x∈[-2,3])所有根之和为(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,已知a4+a7+a10=15,$\sum_{i=4}^{14}$ai=77.若ak=13,则正整数k的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$g(x)={e^{1+{x^2}}}-\frac{1}{{1+{x^2}}}+|x|$,则使得g(x-1)>g(3x+1)成立的x的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=3sinx-4cosx(x∈R)的一个对称中心是(x0,0),则tanx0的值为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,PC⊥底面ABCD,M是PD的中点,AC⊥AD,BA⊥BC,PC=AC=2BC,∠ACD=∠ACB.
(1)求证:PA⊥CM;
(2)求二面角M-AC-P的余弦值.

查看答案和解析>>

同步练习册答案